

Asteroid: Resource-Efficient Hybrid Pipeline Parallelism for **Collaborative DNN Training on Heterogeneous Edge Devices**

Shengyuan Ye¹, Liekang Zeng¹, Xiaowen Chu², Guoliang Xing³, Xu Chen¹

¹ Sun Yat-sen University ² The Hong Kong University of Science and Technology (Guangzhou) ³ The Chinese University of Hong Kong

Challenges

Challenge #1: How to select best parallelism architecture.

Solution: Utilizing hybrid pipeline parallelism (HPP)

Challenge #2: How to tailor parallelism planning for heterogeneous devices.

Solution: Design algorithm to minimize the time required to finish a minibatch

Challenge #3: How to render robust training under dynamic edge environment.

Energy Depletion

Network Anomalies

Solution: Fault-tolerant pipeline replay

Edge Device

Jetson Nano [2]

Jetson TX2 [1]

Jetson NX [3]

ID

Devices

 $5 \times Nano$

 $3 \times NX, 2 \times TX2$

Evaluation Results
NX Only NX Only NobileNetV2@100Mbps ResNet50@1000Mbps Bert-small@1000Mbps Bert-smal

Conclusion

ID

D

GPU Processor

128-core NVIDIA Maxwell

256-core NVIDIA Pascal

384-core NVIDIA Volta

Memory

4GB

8GB

8GB

Devices

 $1 \times NX$, $2 \times TX2$, $3 \times Nano$

 $1 \times TX2, 3 \times Nano$

This paper proposes Asteroid for collaborative DNN training across heterogeneous and resourceconstrained edge devices. Asteroid addresses multiple challenges faced in edge environments and achieves **12.2**× faster training than traditional methods and 2.1× faster than stateof-the-art HPP methods.

Acknowledgements

This work was supported in part by the National Science Foundation of China (No. U20A20159, No. 62272122); Guangdong Basic and Applied Basic Research Foundation (No. 2021B151520008); Guangzhou Basic and Applied Basic Research Program (No. 2024A04J6367); and the Research Grants Council of Hong Kong under grant GRF14212323.