

Nov. 18-22, 2024

USA

Washington, D.C.

Sector Asteroid: Resource-Efficient Hybrid Pipeline Parallelism for Collaborative DNN Training on Heterogeneous Edge Devices

<u>Shengyuan Ye¹</u>, Liekang Zeng¹, Xiaowen Chu², Guoliang Xing³, Xu Chen¹

¹ Sun Yat-sen University

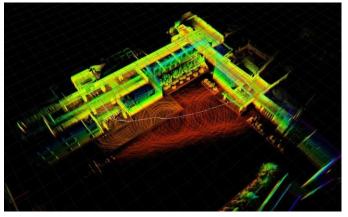
² The Hong Kong University of Science and Technology (Guangzhou) ³ The Chinese University of Hong Kong

MOBICOM 202

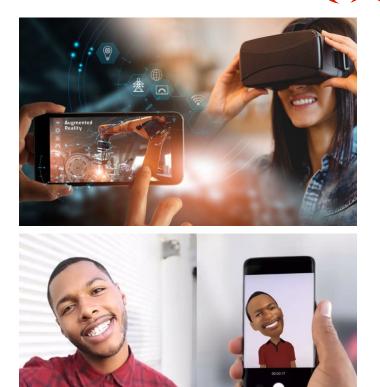
Intelligent Edge Applications

Deep Neural Networks (DNNs) driven increasing intelligent applications.

Personal AI Assistants



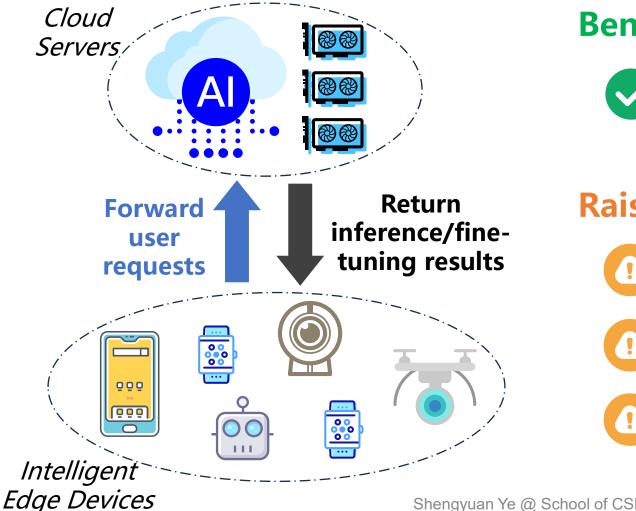
Smart Robotics/UAV



AR & VR APPs

Cloud-Assisted Deployment

Current DNNs-based applications heavily depend on cloud services.



Benefits of cloud deployment:

Powerful and scalable computing resources.

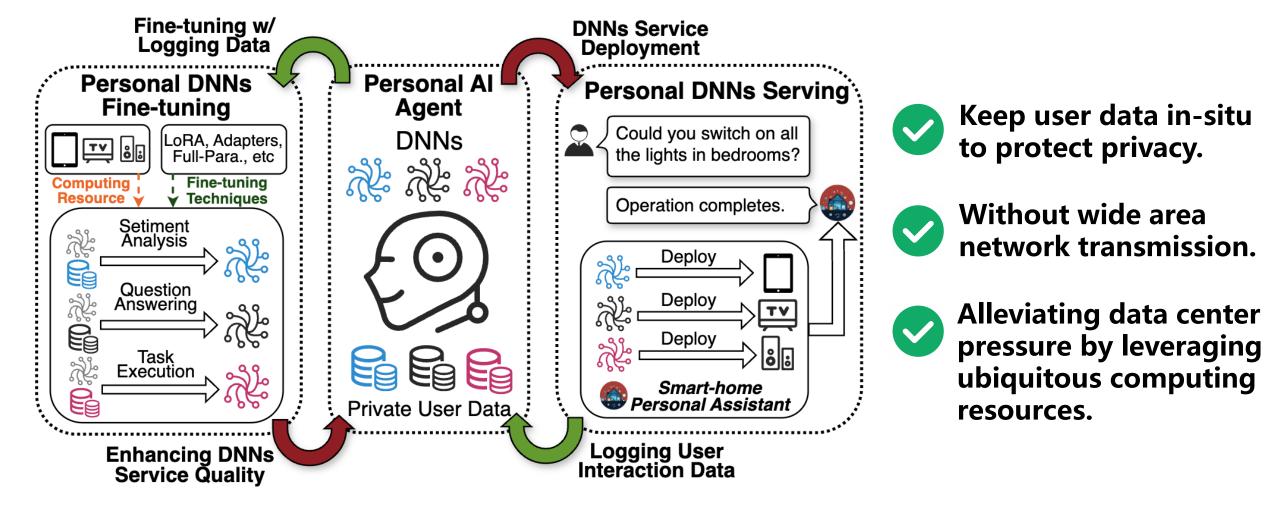
Raising three game-stopping problems:

Data privacy concerns.

Network and datacenter pressure.

On-device Deployment

• **On-device deployment** becomes a promising paradigm for intelligent edge APPs.



Challenges in On-device Training

• Resource wall of a single edge device presents challenges for on-device training.

Table 1: Elapsed time of a training epoch on devices.

DNN Model	Average Epoch Time				
DININ MOUEI	A100	A100 Jetson TX2 Jetso			
EfficientNet-B1	10sec	11.2min	26.7min		
MobileNetV2	9.4sec	8.5min	22min		
ResNet50	65sec	1.14hour	3.48hour		

Unbearably prolonged training time

Techniques	Trainable		Memory Foot	print (GB)	
	Parameters	Weights	Activations	Gradients	Total
Full	737M (100%)	2.75	5.33	2.75	10.83
Adapters	12M (1.70 %)	2.80	4.04	0.05	6.89
LoRA	9M (1.26%)	2.78	4.31	0.04	7.13
Inference	/	2.75	/	/	2.75

Table 1: The breakdown of memory footprint. "Activations"contain the intermediate results and optimizer states. Model:T5-Large; mini-batch size: 16; sequence length: 128.

Memory footprint exceeds typical edge device memory budgets

Keep user data in-situ to protect privacy.

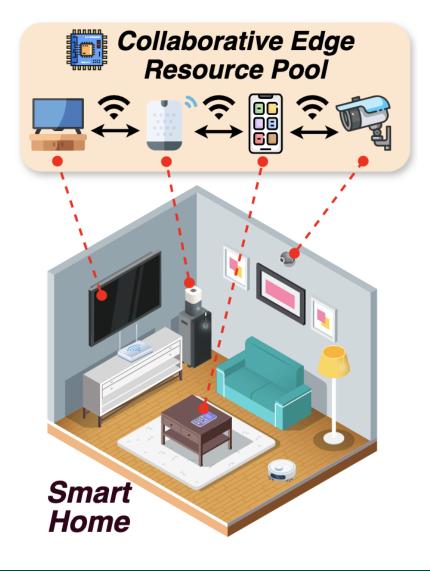
Without wide area network transmission.

Alleviating data center pressure by leveraging ubiquitous computing resources.

Limited and non-scalable onboard computing resources

Opportunities: Collaborative Edge Computing

- Edge scenarios like smart homes usually comprise a group of trusted idle devices (e.g., mobile phones, laptops, and smart-home devices owned by the same user or family)
- ✓ These accompanying devices are typically in physical proximity to the primary one running on-device learning tasks and can be associated as a collaborative resource pool for in-situ DNNs training acceleration.

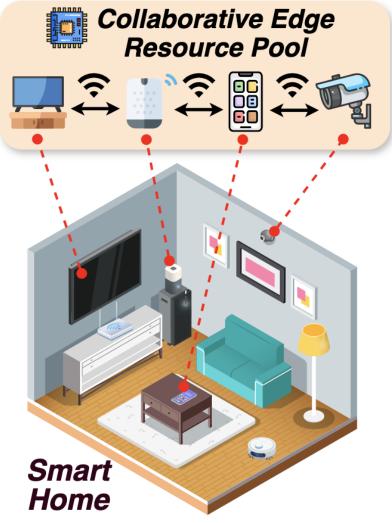


Challenges in Collaborative Edge Training

1. How to select the best parallel architecture to orchestrate multiple edge devices?

2. How to tailor parallelism planning to the resource budget of heterogeneous edge devices?

3. How to render stable and reliable DNNs training under **dynamic edge environment**.



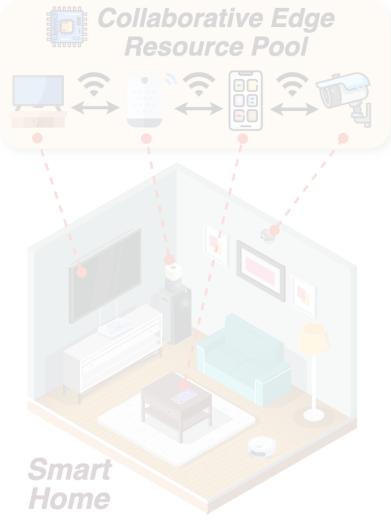
Challenges in Collaborative Edge Training

Challenges

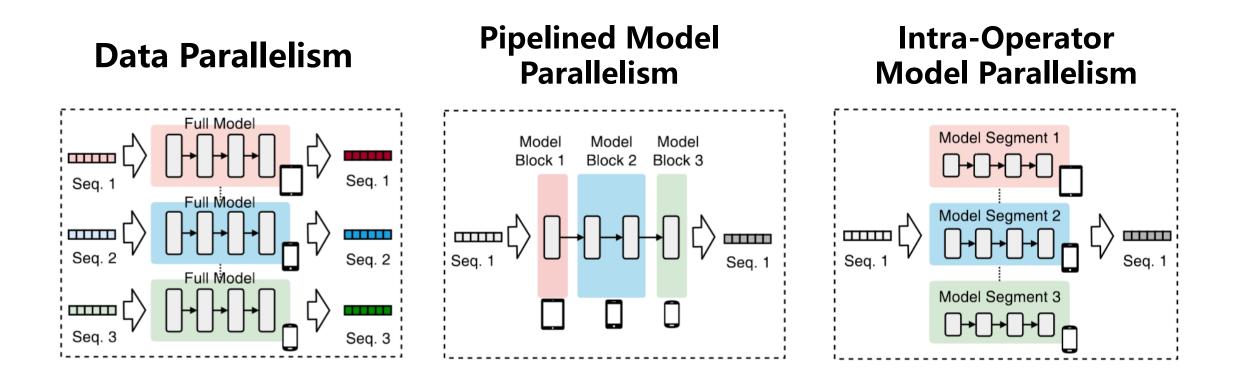
1. How to select the best parallel architecture to orchestrate multiple edge devices?

2. How to tailor parallelism planning to the resource budget of **heterogeneous** edge devices?

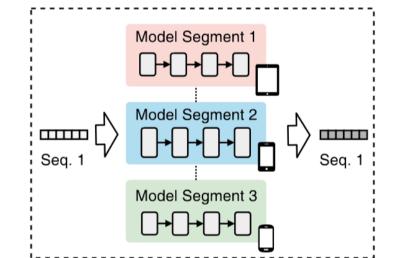
3. How to render stable and reliable DNNs training under **dynamic edge environment**.



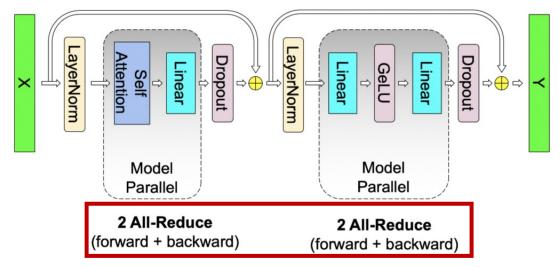
• Solution to Challenge #1: Choosing the most suitable parallelism strategy.



• Solution to Challenge #1: Choosing the most suitable parallelism strategy.

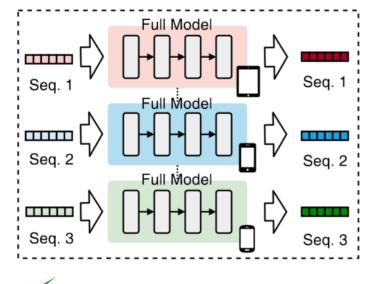


- Operator-level model parallelism encounters data dependency issues
- Necessitating extensive synchronization of intermediate tensors at each DNN layer.



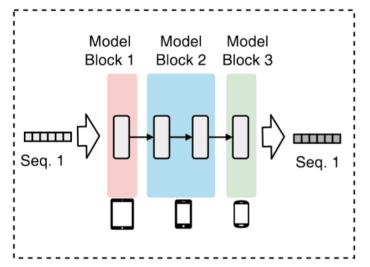
• **Solution to Challenge #1**: Choosing the most suitable parallelism strategy.

Data Parallelism

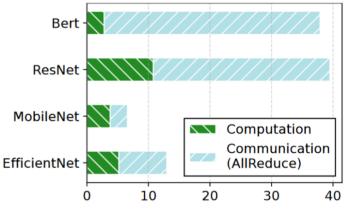


Convolutional layers

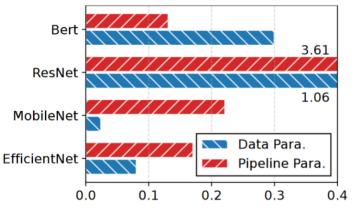
Pipelined Model Parallelism



Fully connected layers



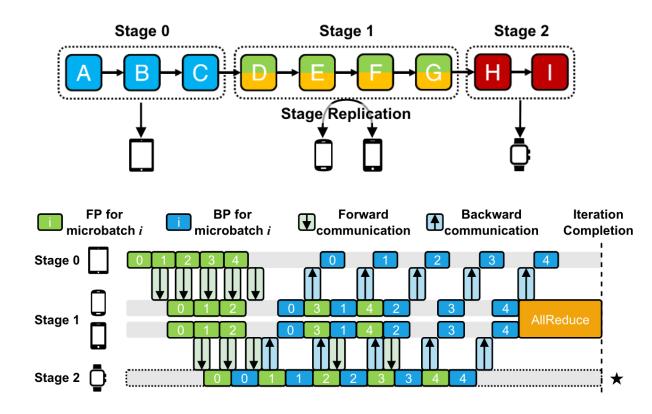
Latency Breakdown in a DP round (s)



Communication Volume (MB/sample)

Solution to Challenge #1: Utilizing hybrid pipeline parallelism for orchestration.

- Step 1: **Divide the DNNs** into multiple pipeline stages, with each stage containing a sub-model.
- Step 2: Group the edge devices and assign each group to a different pipeline stage.
- Step 3: Each mini-batch of fine-tuning data is split into multiple micro-batches and injected into the pipeline, enabling inter-group pipeline parallelism and intra-group data parallelisms.



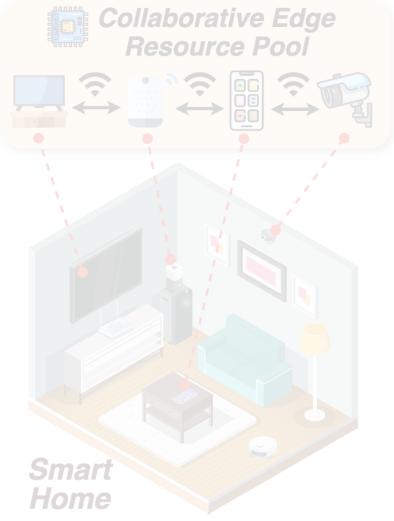
Challenges in Collaborative Edge Training

Challenges

1. How to select the best parallel architecture to orchestrate multiple edge devices?

2. How to tailor parallelism planning to the limited resource budget of **heterogeneous** edge devices?

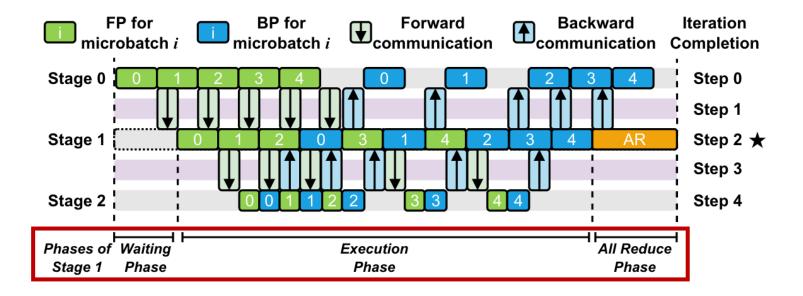
3. How to render stable and reliable DNNs training under **dynamic edge environment**.



Parallelism Planning for HPP

- Solution to Challenge #2: Optimize workload partitioning and device Orchestration.
 - Optimization Objective: HPP-Round Latency = $\max_{s \in \{0,1,\dots,S-1\}} (T_w^s + T_e^s + T_a^s)$,

$$T_{w}^{s} = \sum_{i=0}^{s-1} E_{f}^{i}, \quad T_{a}^{s} = \frac{2\left(|\mathcal{G}_{s}|-1\right) \cdot \sum_{l \in \mathcal{D}_{s}} w_{l}}{|\mathcal{G}_{s}| \cdot \min_{d,d' \in \mathcal{G}_{s}} b_{d,d'}}, \quad T_{e}^{s} = M \times \left(E_{f}^{dm} + E_{b}^{dm}\right) + \begin{cases} \sum_{i=s}^{dm-1} \left(E_{f}^{i} + E_{b}^{i}\right), & s < dm, \\ -\sum_{i=dm}^{s-1} \left(E_{f}^{i} + E_{b}^{i}\right), & s \ge dm. \end{cases}$$



Parallelism Planning for HPP

• Solution to Challenge #2: Optimize workload partitioning and device Orchestration.

A novel **dynamic programming algorithm** is devised to facilitates optimal parallelism planning.

Algo	orithm 2: Dynamic Programming HPP Planning	Proportios	PipeDream	Dapplo	Alpa	HetPipe	Asteroid
1 for	p from 1 to $min(L, N)$ do	Properties	FipeDream	Dapple	Alpa	пеггіре	Asterolu
2 3	for n from 1 to N do for l from 1 to L do	Combining DP with PP?	~	\checkmark	\checkmark	\checkmark	\checkmark
4	for n' from 0 to n do	Resource					
5	for l' from 0 to l do	Heterogeneous					
6	Get E_f^s and E_h^s with Alg. 1 and Eq. (8);	Awareness?					
7	Update Dominant Step with Eq. (11);	Memory Constraint					
8	Get T_w^s , T_e^s and T_a^s with Eq. (5) and (6);	Awareness?			•		•
9 10	Get HPP-Round Latency with Eq. (4); Update $Q(l, n, p)$ with Eq. (10);	Communication Modeling & Optimization?		~			~

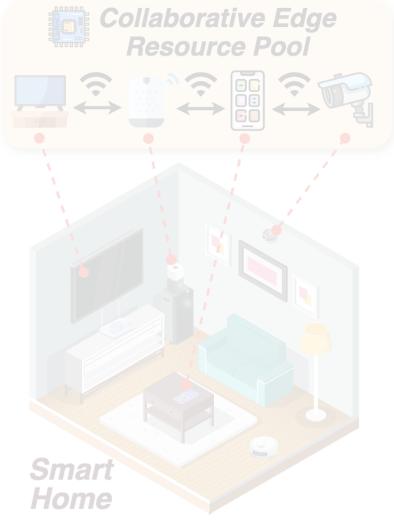
Challenges in Collaborative Edge Training

Challenges

1. How to select the best parallel architecture to orchestrate multiple edge devices?

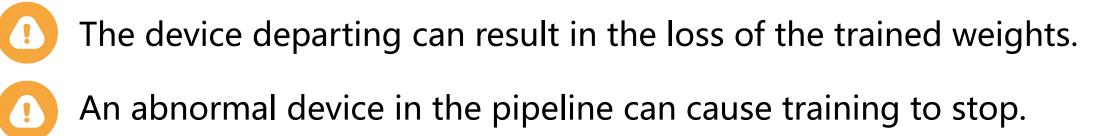
2. How to tailor parallelism planning to the limited resource budget of **heterogeneous** edge devices?

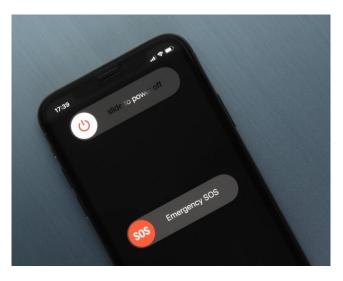
3. How to render stable and reliable DNNs training under **dynamic edge environment**.



Fault-Tolerant Pipeline Replay

• Devices at the edge exhibit strong dynamics.



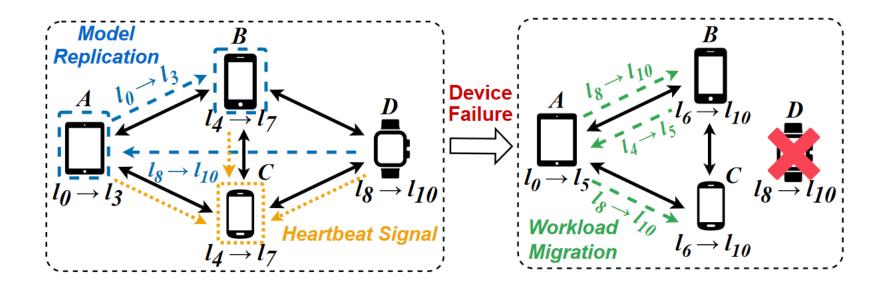


Energy Depletion

Network Anomalies

Shengyuan Ye @ School of CSE, Sun Yat-sen University

Fault-Tolerant Pipeline Replay



- Heartbeat-guided Failure Detection.
- Topology-driven Model Replication.
- Layer-wise Lightweight Pipeline Re-planning.

• Testbeds

Using these 3 heterogeneous devices, we simulated 4 different edge clusters, including both homogeneous and heterogeneous clusters.

Edge Device	GPU Processor	Memory
Jetson Nano [2]	128-core NVIDIA Maxwell	4GB
Jetson TX2 [1]	256-core NVIDIA Pascal	8GB
Jetson NX [3]	384-core NVIDIA Volta	8GB

Table 6: Heterogeneous edge env. used in experiments.

ID	Devices	ID	Devices
A	$5 \times Nano$	C	$1 \times NX$, $2 \times TX2$, $3 \times Nano$
В	$3 \times NX$, $2 \times TX2$	D	$1 \times TX2, 3 \times Nano$

Models and datasets

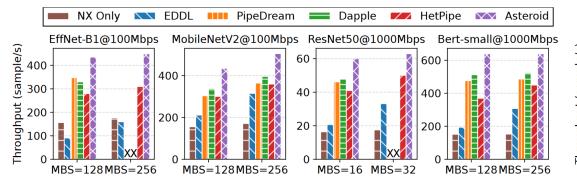
- 4 typical DNNs models widely used in CV and NLP areas: EfficientNet, MobileNet, ResNet and BERT.
- > Evaluate with the CIFAR-10, Mini-ImageNet and GLUE dataset.

Maintained high performance <u>across various edge environment and network</u> <u>conditions</u>, with up to 12.8x training acceleration compared to DP and PP!!!

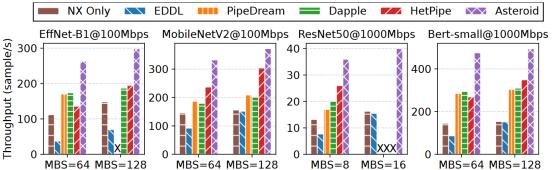
Table 4: Summary of throughput results comparing Asteroid with on-device training, data parallelism (DP), and pipeline parallelism (PP). The pipeline configuration generated by Asteroid is visualized in Fig. 12. We select the most powerful device in each edge environment as the platform for on-device training.

Task	Model	Dataset	Input Size	Edge	Asteroid	Speedup over		
	WIOUEI			Environment	Config.	Device	DP	PP
Image Classi- fication	EfficientNet-B1 [49]	Cifar-10 [15]	$3 \times 32 \times 32$	A (100Mbps)	0	$4.4 \times$	$2.1 \times$	$2.8 \times$
				B (100Mbps)	4	$3.0 \times$	$4.8 \times$	9.7×
				B (1000Mbps)	4	$3.7 \times$	$2.1 \times$	$1.4 \times$
				A (100Mbps)	0	4.5×	$1.5 \times$	3.5×
	MobileNetV2 [45]	Cifar-10 [15]	$3 \times 32 \times 32$	B (100Mbps)	6	$3.2 \times$	$2.3 \times$	$11.2 \times$
				B (1000Mbps)	6	3.8×	$1.2 \times$	$1.3 \times$
				A (100Mbps)	0	3.4×	3.6×	$5.8 \times$
	ResNet50 [20]	Mini-ImageNet [52]	$3 \times 224 \times 224$	B (100Mbps)	6	$1.5 \times$	$6.1 \times$	$12.2 \times$
				B (1000Mbps)	4	$3.7 \times$	$2.9 \times$	$3.1 \times$
Language Model				A (100Mbps)	8	3.5×	6.4×	1×
	Bert-small [14]	Synthetic Data	32×512	B (100Mbps)	Ø	$1.3 \times$	$6.8 \times$	$1 \times$
				B (1000Mbps)	Ø	3.9×	$4.2 \times$	1.3×

When compared with SOTA system for cloud, Asteroid achieves up to **86% latency** reduction compared to these baseline methods!!!



(a) Training throughput compared with existing approaches on Env. B.



(b) Training throughput compared with existing approaches on Env. C.

Figure 13: Training throughput comparison under various settings. \times means out-of-memory error.

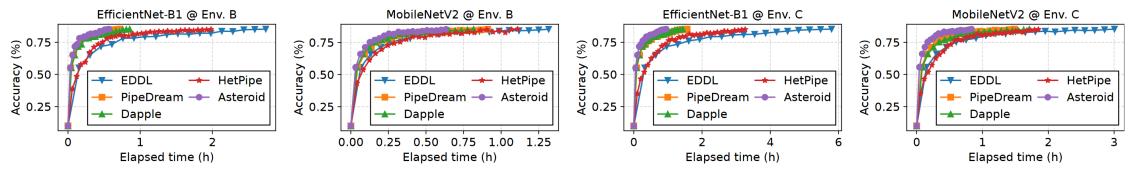
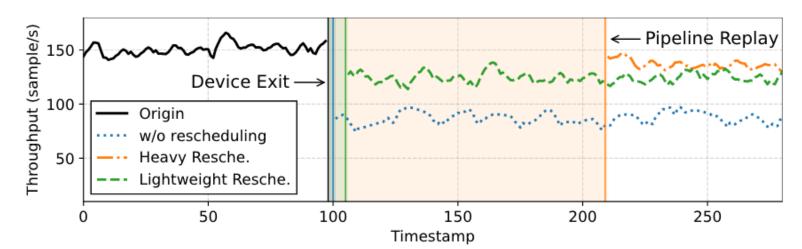
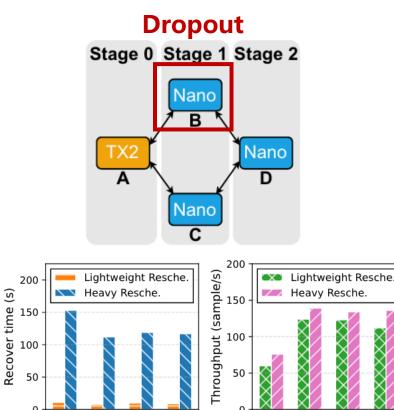


Figure 14: Training convergence of EfficientNet-B1 and MobileNetV2 on Env. B and C compared with baselines.

Our design enables efficient replay of training within several seconds, while simultaneously maintaining a high training throughput by rebalancing the pipeline.





В

Dropout Device

С

D

А

Figure 17: Throughput variation of different scheduling strategies when device B exits the training pipeline.

Shengyuan Ye @ School of CSE, Sun Yat-sen University

B

Dropout Device

Takeaway

Eco: An <u>Edge</u> <u>CO</u>llaborative AI framework for serving miscellaneous AI model at the edge.

We aim to design affordable, accessible, and adaptive AI with your private group of mobile and edge devices.

https://collaborative-edge-ai.github.io/

Features

Optimized Computation

- Language models
- Vision perceptrons
- Graph nets

🛠 Heterogeneity Awarenss

- Mobile phones
- Embedded devices
- Edge servers

Eco Project Page

🏂 Resilient Elasticity

- Device breakdown
- Load variation
- Bandwidth fluctution

Thanks for listening

<u>Shengyuan Ye¹</u>, Liekang Zeng¹, Xiaowen Chu², Guoliang Xing³, Xu Chen¹

¹ Sun Yat-sen University

² The Hong Kong University of Science and Technology (Guangzhou) ³ The Chinese University of Hong Kong

香港中文大學 The Chinese University of Hong Kong