
Communication-Efficient Model Parallelism for
Distributed In-Situ Transformer Inference
Yuanxin Wei, Shengyuan Ye, Jiazhi Jiang, Xu Chen, Dan Huang∗, Jiangsu Du∗, Yutong Lu

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
{weiyx25, yeshy8, jiangjzh6}@mail2.sysu.edu.cn,

{chenxu35, huangd79, dujiangsu, luyutong}@mail.sysu.edu.cn

Abstract—Transformer models have shown significant success in
a wide range of tasks. Meanwhile, massive resources required by
its inference prevent scenarios with resource-constrained devices
from in-situ deployment, leaving a high threshold of integrating
its advances. Observing that these scenarios, e.g. smart home of
edge computing, are usually comprise a rich set of trusted devices
with untapped resources, it is promising to distribute Transformer
inference onto multiple devices. However, due to the tightly-
coupled feature of Transformer model, existing model parallelism
approaches necessitate frequent communication to resolve data de-
pendencies, making them unacceptable for distributed inference,
especially under weak interconnect of edge scenarios.

In this paper, we propose DeTransformer, a communication-
efficient distributed in-situ Transformer inference system for edge
scenarios. DeTransformer is based on a novel block parallelism
approach, with the key idea of restructuring the original Trans-
former layer with a single block to the decoupled layer with multi-
ple sub-blocks and exploit model parallelism between sub-blocks.
Next, DeTransformer contains an adaptive placement approach to
automatically select the optimal placement strategy by striking a
trade-off among communication capability, computing power and
memory budget. Experimental results show that DeTransformer
can reduce distributed inference latency by up to 2.81× compared
to the SOTA approach on 4 devices, while effectively maintaining
task accuracy and a consistent model size.

Index Terms—Model Parallelism, Distributed Transformer In-
ference, Edge Computing, Deep Learning System

I. INTRODUCTION

Transformer models [1] has become the bedrock of various
tasks, e.g. natural language processing [2], and are increasingly
gaining significance within the AI community. Due to the
resource-hungry feature of Transformer inference tasks, it is
traditional to take cloud-assisted approaches in edge scenarios,
relying on the backbone network and remote servers. By con-
trast, the in-situ processing in edge devices enjoys the following
benefits compared to cloud-assisted deployment: (1) Enhanced
privacy and security: the risk of unauthorized access or privacy
breaches can be reduced by keeping data on local devices
instead of sending data to external servers; (2) Improved ef-
ficiency and robustness: deploying Transformer models locally
allows for faster inference without the need to communicate
with remote servers, preventing the poor latency case caused
by fluctuated network conditions; (3) Ease of pressure on the
backbone network and cloud center: by local deployment, only
a minimal amount of data needs to be transmitted to remote

*Corresponding authors.

facility, thereby reducing network traffic and lightening the
server load.

However, as Transformer models scale up to achieve re-
markable performance, it is non-trivial to deploy them on a
single local device with limited computing power and memory.
Alternatively, we observe that typical edge scenarios usually
comprise a variety of idle trusted devices, this presents an
opportunity to distribute Transformer inference across multiple
adjacent devices, thereby leveraging additional resources for
improved performance. Unfortunately, it is challenging to take
existing model parallelism approaches for distributed in-situ
Transformer inference. This is because Transformer models
are tightly-coupled that its multi-head attention mechanism
jointly aggregates the results of all heads into the same linear
function. Thus, it always takes frequent communications to
remove data dependencies when breaking up linear layers onto
multiple devices. The current state-of-the-art model parallelism
approach, tensor parallelism in Megatron-LM [5], requires two
all-reduce communications in a single Transformer layer. This
introduces a level of overhead that is often unacceptable under
bandwidth-limited edge scenarios.

In this paper, we propose DeTransformer, a system designed
for distributed in-situ Transformer inference in edge scenarios,
with the primary focus on minimizing communication over-
heads. DeTransformer firstly introduces a novel model paral-
lelism approach, called block parallelism (BP) approach. BP
will be applied to the majority of original Transformer layers,
with the key idea of restructuring the original Transformer layer
with a single block to the decoupled layer with multiple sub-
blocks, so as to expose inter-block parallelism without data
dependency. Next, to better leverage the model parallelism of
decoupled models, an adaptive placement approach is proposed
to automatically search for the optimal model-to-device map-
ping. This approach takes latency reduction as the primary goal
and considers constraints including communication capability,
computing power and memory budget. Main contributions are
summarized as follows:

• We reveal the communication bottleneck when apply-
ing existing model parallelism approaches to distributed
Transformer inference through preliminary experiments
and hot-spot analysis across edge devices.

• We introduce a novel communication-efficient model par-
allelism approach, block parallelism (BP), which decou-
ples the majority of original Transformer layers and

greatly enhances the model parallelism.
• We devise an adaptive placement approach to search

for the optimal model-to-device mapping. It includes an
offline profiling procedure and an expertly crafted search
space for deciding the placement with the least latency.

• We implement DeTransformer prototype system and eval-
uate it in realistic computing testbeds.

Experimental results demonstrate a speedup of up to 2.81×
compared to the state-of-the-art model parallelism approach
when distributing across 4 devices. Meanwhile, DeTransformer
achieves promising accuracy results on downstream tasks,
equivalent to or even surpassing the original Transformer
model, without enlarging the model size. This showcases its
significant potential in distributed Transformer inference. In this
paper, we use notations in Table I to elaborate on our methods.

TABLE I: Notation
sq Length of input sequence Nb Number of original blocks
h Hidden size Nh Number of Attention heads
bs Batch size Ndiv Number of divisions
l Number of Transformer layers Ndev Number of devices

II. BACKGROUND AND MOTIVATION

A. Distributed inference of Transformer Models

When distributing Transformer inference tasks across mul-
tiple devices, there are essentially three primary parallelism
approaches, i.e. data parallelism (DP) [3], pipeline parallelism
(PP) [4], and model parallelism (MP) [5] [6]. As in Table II,
these approaches differ in terms of latency reduction, through-
put increase, and memory reduction. DP keeps a complete
model copy in each device and distributes requests across
devices. PP divides the model by layers, assigning distinct
sets of consecutive layers to different devices. These two
approaches cannot achieve multi-device parallelism within a
single inference request, making it unable to reduce latency.

Device1 Device2 Device1 Device2

(a) Tensor Parallelism (b) Sequence Parallelism

X
X2

X2X1

X1

X

Device1 Device2

(c) Block Parallelism
[sq,h/2]

X1

X1

X2

X2

[sq,h/2]
[sq/2,h][sq/2,h]

[sq,h]

Fig. 1: The illustration of different parallelism approaches.

MP divides each layer’s workload and distributes them across
devices. Given that each layer is processed in parallel by several
devices at a time, it can reduce the latency of a single request.
Thus, MP stands out as the most promising approach in edge
scenarios. Since the multi-head attention mechanism jointly
aggregates the results of all heads into the same linear function,
existing model parallelism approaches take communications
to eliminate the data dependencies. There are two existing
popular model parallelism approaches, e.g. tensor parallelism
(TP) [5] and sequence parallelism (SP) [6]. In Fig. 1, TP

TABLE II: Attributes of different parallelism approaches.

DP PP
MP

TP SP BP
Latency Reduction × × X X X

Throughput Increase X X X X X
Memory Reduction × X X × X

Base Large0.0

1.0

2.0

3.0

4.0

5.0

La
te

nc
y(

s)

1.57s

4.48s

(a)
Ndev = 1 2 40.0

0.5

1.0

1.5

2.0

La
te

nc
y(

s)

1.57s

1.11s
0.93s

(b)
0

20

21

22

Sp
ee

du
p

Computation Communication TP Speedup Linear Speedup

Fig. 2: (a) Inference latency on single device of Bert-Base
and Bert-Large. (b) Latency and speedup when applying TP
on Bert-Base across Ndev devices.

involves the partitioning of a layer’s weight, whereas SP
involves the partitioning of a layer’s input. They have distinct
communication and memory utilization characteristics. When
distributing a single Transformer layer, TP necessitates two
allreduce communications and retains a portion of the weight,
whereas SP necessitates two allgather communications and
preserves the entire weight. By contrast, our block parallelism
(BP) approach tends to distribute the workload of the decoupled
Transformer layer without necessitating communication.

B. Communication Bottleneck in Model Parallelism

At first, to demonstrate the necessity of introducing dis-
tributed inference, we conduct an experiment involving single-
request inference of Bert-Base and Bert-Large [2] in Fig. 2
(a). A single Raspberry Pi 4B device takes 1.57s and 4.48s
respectively, which significantly deviates from meeting the low-
latency demands in edge scenarios.

Next, we take TP as an example to illustrate that apply-
ing existing model parallelism approaches leads to significant
communication bottleneck and weak scaling ability during dis-
tributed inference. As illustrated in Fig. 2 (b), which shows the
performance of scaling Bert-Base inference from 1 to 4 devices
under bandwidth of 500Mbps, the communication overhead
takes a significant portion in the overall inference latency and
seriously hinders the scalability of distributed inference.

III. SYSTEM AND METHODOLOGIES

A. Overview

Our design aims to perform low-latency distributed Trans-
former inference over multiple resource-constrained devices.
Fig. 3 shows the workflow of our proposed DeTransformer sys-
tem, which features three phases: Preliminary training (Phase
1), Adaptive placement (Phase 2) and Distributed inference
(Phase 3). Under the block parallelism approach, Phase 1 is
responsible for decoupling the original Transformer model and
training the resultant decoupled model with the advanced GPU
cluster. Next, Phase 2 generates the placement plan of the
decoupled model with our adaptive placement approach. This

Data GPU Clusters

Structure
Decoupling Training

Original Transformer

Input

Decoupled Transformer

Trained Decoupled Transformer

Automatic
Search

Placement Scheme

Phase 1: Preliminary Training

Phase 3: Distributed Inference

Phase 2: Adaptive Placement

Split

Concat

Decoupled TransformerInference Devices

Offline Profile

Communication
Capability

Computing Power

Memory Budget

Search Space

BP+TP

BP+Allgather

BP+SP

Fig. 3: DeTransformer Overview: A three phase workflow.

placement approach includes an offline profiling procedure and
an expertly crafted search space. By balancing communication
capability, computing power and memory budget, it generates
the placement plan for the decoupled Transformer model that
targets on reducing the latency. In Phase 3, guided by the
placement plan generated in Phase 2, we deploy the decoupled
model trained in Phase 1 onto multiple devices.

B. Block Parallelism through Structure Decoupling

× × ×

[h,h]

×

×

×

V

Q

K

[sq,h]

A
[sq,h]

[h,h]
[sq,sq]

X
[sq,h]

Z

[h/2,h]
[sq,h]

× × × Decoupled MLP

×

×

×

V1

Q1

K1

[sq,h/2]
[sq,h]

[h,h/2]

Z1

[sq,h/2][sq,sq]

W�
�

W�
�

W�
�

MLP

(b) Multiple Sub-Blocks in Decoupled Transformer Layer

(a) Single Block in Original Transformer Layer

A1

Y

X1
Y1

W�

W�

W�
QK�

QK��

[sq,h] [sq,h]

[sq,h/2]

W�

W�
�

Self-Attention

Self-Attention

Fig. 4: Original and decoupled Transformer layers.
DeTransformer tends to partition the Transformer model with

reduced data dependency, thereby introducing less communi-
cation overhead during distributed inference. With the concept
of co-design, block parallelism (BP) firstly decouples existing
Transformer models and then harnesses enhanced model paral-
lelism capabilities.

Our decoupled Transformer model also consists of stacks of
Transformer layers, and we start by describing the decoupled
layer, which is the basic building unit inherited from the
original layer. Fig. 4(a) illustrates an original Transformer
layer, which can be formulated as Equation (1), where [�|�] is
concatenate operation.

[Q|K|V] = [WQ|WK |WV] ·X
A = Self-Attention(Q,K, V)

Z = A ·WB

Y = MLP(Z)

(1)

[Qi|Ki|Vi] = [WQ
i |W

K
i |WV

i] ·Xi

Ai = Self-Attention(Qi,Ki, Vi)

Zi = Ai ·WB
i

Yi = MLP(Zi)

(2)

As indicated in §II-B, existing model parallelism approaches
are unable to fully separate the general matrix multiplications

Sub-Block Sub-Block

Sub-Block Sub-Block

Original Block

Sub-Block Sub-Block

Sub-Block Sub-Block

Original Block

Sub-Block Sub-Block

Original Block

… …

Output

sq
h

X
X1

X1

Multi-head Attention

X

X

X1 X2

Split

Concat

MLP

X2

X2

Multi-head Attention

MLP

Multi-head Attention

MLP

Fig. 5: Structure of decoupled Transformer model.

(GEMM) involved in linear operations into entirely independent
computations. Inspired by the splitting strategy of tensor paral-
lelism, we achieve independence by dividing both weights and
inputs into fragments and recombining them into sub-blocks.
In other words, BP approach eliminates the dependency among
various block matrix multiplications in the original layer. In
details, as shown in Fig. 4(b), the weight matrix of the first
linear operation is divided by rows, while that of the second
linear operation is divided by columns. This division is matched
with a corresponding splitting of the input, resulting in each
input fragment having a size of [bs, sq, h/Ndiv]. Then, each
input fragment will only flow through the corresponding group
of operations (Sub-Block). Notably, the order that splits by
rows first can preserve the size of intermediate results and
help maintain the accuracy. A similar strategy is also applied
to the MLP module. Ndiv sub-blocks make up the decoupled
layer, and the i-th sub-block can be formulated as Equation (2)
(i ∈ {0, 1, ..., Ndiv − 1}).

Next, we build the Transformer model by stacking both the
original layer and the decoupled layer, as shown in Fig. 5.
Although the decoupled layer completely eliminates the data
dependency between sub-blocks, it is unacceptable to only
stack decoupled layers. This is because the lack of information
exchange between intermediate results among sub-blocks can
lead to a significant reduction in accuracy [7]. Thus, we
use an original layer after every several decoupled layers to
achieve information exchange between sub-blocks and ensure
the model quality. The input and output of each original
block are tensors of [bs, sq, h] and that of each sub-block are
tensors of [bs, sq, h/Ndiv]. Thus, before the original layer, we
concatenate the tensors of Ndiv divisions along h dimension to
form the tensor of size [bs, sq, h], which are then passed into
the original layer. After the original layer, we perform a split
operation, splitting the tensor into Ndiv divisions in reverse
for the subsequent decoupled layer. Notably, our decoupled
model does not increase the model size that the sum of total
parameters remains consistent regardless of Ndiv .

When distributing the decoupled model on devices, a trade-
off exists between model accuracy and inference efficiency as
each original layer naturally becomes a synchronization point
across devices. Specifically, a larger Nb results in higher com-

Plan 3：BP+Allgather

Plan 1：BP+TP

Split

AllgatherAllreduce

Intermediate Data

Weight Matrix

Plan 2：BP+SP

Fig. 6: Placement plan search space. There displays three
heuristic placement plans of the original layer.

munication costs, which will offset the latency reduction gained
from structure decoupling. Apart from inference efficiency, Nb

also influences model accuracy. Having more original layers
leads to more frequent feature interchanges, which leads to
better accuracy, while having fewer original layers tends to hurt
the model accuracy due to insufficient information interchange.
We handle this balance by experiments as in IV-B.

C. Adaptive Placement Approach

The adaptive placement approach explores the optimal place-
ment plan for the decoupled Transformer model with the
primary goal of reducing latency. This approach decides the
placement plan by comprehensively balancing the communi-
cation capability, computing power and memory budget in a
multi-device system. It incorporates an offline profiling proce-
dure to produce execution durations and an expertly crafted
search space. With execution durations and the predefined
search space, the adaptive placement approach takes a linear
summation method to select the optimal placement plan from
the search space.

In terms of the offline profiling procedure, DeTransformer
leverages the observation that Transformer model inference
exhibits little variance in the duration ratio between commu-
nication and computation when processing inputs with diverse
sequence lengths. This observation enables us to conduct pro-
filing using a typical sequence length and determine a general
placement plan. Additionally, the presence of repeated layers
in decoupled Transformer models significantly mitigates the
profiling overhead. Consequently, we get operation durations
on the target platform by averaging repeated executions.

To determine the search space, we focus on the placement
plan of two distinct component types within the decoupled
Transformer model respectively, namely decoupled layers and
original layers. For decoupled layers, although we can also
apply TP and SP for distributing them, they are less efficient
than BP. Since a original block is decoupled into Ndiv divisions
and they are independent, we can place these Ndiv sub-blocks
of the decoupled layer evenly on the involving Ndev devices to
exploit the inter-block parallelism revealed by BP, introducing
no communication.

For original layers, it can be treated as a synchronization
point. To pursue the optimal latency, it requires to strike a trade-
off among the communication capability, computing power
and memory budget, so as to determine the final placement
plan. Based on these considerations, we propose three heuristic
placement plans for the original layer as shown in Fig. 6, which
is also the search space of our adaptive approach:

• Plan 1 (BP+TP) applies BP to decoupled layers and TP to
original layers. The weights are partitioned equally in the
original layer. In this way, there is an allgather commu-
nication before each original layer to collect outputs from
all devices. Besides, each original layer requires another
two allreduce communications.

• Plan 2 (BP+SP) applies SP to original layers and each
device keeps all weights. There needs two allgather
communications before and after each original layer. SP
partitions the input sequence along sq dimension and takes
another two allgather communications in each original
layer.

• Plan 3 (BP+Allgather) asks that each device execute an
original layer individually. This plan necessitates only an
allgather communication. By contrast, each device has to
keep all weights.

These three placement plans have their own advantages
and drawbacks. Plan 1 and Plan 2 require frequent collective
communications at a synchronization point, but each device
bears only part of computation. Although Plan 2 has one more
communication, the allgather communication typically has a
shorter duration compared to the allreduce communication.
Besides, Plan 1 causes minimal memory pressure on the device
as each device only needs to load part of the weights, while
Plan 2 requires each device to store all weights. Plan 3 requires
the least communication but also the highest computation,
and it also poses a challenge to the memory budget as a
single device need to load the all weights. In a specific multi-
device system, different plans will show diverse affinity towards
network environment, computing power and memory budget.

With profiling results and search space, the adaptive place-
ment approach takes a linear summation method to determine
the final choice. At first, the adaptive approach will exclude the
plan that will run out of the device memory. Next, we compare
the request latency of different plans by accumulating durations
of all operations required in the decoupled model. Thus, De-
Transformer can generate the optimal placement plan with the
shortest execution time from the search space for the distributed
inference, which is then executed by DeTransformer’s runtime.

IV. EVALUATION

In this section, we evaluate the effectiveness of our De-
Transformer system in two steps. As DeTransformer adopts
decoupled Transformer structure, we firstly study the impacts
of structure decoupling on model accuracy across a range
of downstream tasks, which we call Accuracy Experiments.
Second, we study the distributed inference performance of
DeTransformer under a variety of network bandwidth, namely
Performance Experiments.

TABLE III: Impacts of structure decoupling on model accuracy.
Bold indicates that the decoupled model has equal or higher
accuracy than the original one, while ∗ indicates the best result.

GLUE Mcc/Acc(%)Model Nb Ndiv CoLA SST-2 MRPC MNLI
SQUAD
Acc(%)

Original
Bert-Base \ \ 40.43 91.28 84.56 81.59 77.54

1 4 39.85 89.45 80.64 78.80 74.77
2 4 41.26 89.68 87.75∗ 80.54 75.82
3 4 41.20 90.37 83.82 80.77 76.66
4 4 42.06 92.20∗ 86.52 81.21 76.91
4 8 36.75 91.28 83.58 80.40 74.82

Decoupled
Bert-Base

(Ours)

4 2 47.51∗ 89.91 84.56 81.90∗ 78.37∗

Original
Bert-Large \ \ 51.00∗ 91.39∗ 80.39 81.73 79.29

4 4 47.20 90.82 83.82 81.96∗ 78.85
6 4 47.40 91.28 85.04 81.81 79.86

Decoupled
Bert-Large

(Ours) 8 4 44.25 90.37 86.01∗ 81.85 79.88∗

A. Experiment Setup

Models. We evaluate the efficiency of our proposed DeTrans-
former on the trending Transformer-based model: BERT [2].
We focus on BERT-Base (l = 12, h = 768, Nh = 12) and
BERT-Large (l = 24, h = 1024, Nh = 16) with 110M and
340M parameters respectively.

Accuracy Experiments. We pre-train BERT models on
a high-performance cluster, equipped with 4 NVIDIA A800
GPUs, each having 80 GB of GPU device memory. We train
both the original Bert and the decoupled Bert with identical
hyper-parameters in Pytorch. In details, we train 7038 steps
using a sequence length of 128 on English Wikipedia data
corpus with 2.5B words, as used in the original Bert [2].
Notably, each training case takes more than 1 week and Table
III shows decoupled models with varied Nb and Ndiv . Further-
more, we employ 4 tasks of GLUE benchmark [8] and SQuAD
v1.1 task [9] as downstream tasks, which are commonly-
used for evaluating a Transformer model, to demonstrate the
performance of BERT models.

Performance Experiments. We conduct distributed infer-
ence on a multi-ARM platform with four Raspberry Pi 4B
as edge devices, each of which consists of a ARM-Cortex-
A72 Soc operating at 1.5GHz and 4 GB memory. Note that
these edge devices are connected via a gigabyte H3C S1850V2
switch, providing an interface to adjust the D2D bandwidth so
that we can evaluate the performance under different network
conditions. We set the batch size to 1 and fix the sequence
length to a constant value of 128. We employ the average end-
to-end inference latency and throughput as our performance
metrics. To ensure validity and reliability, we perform warm-up
runs and record the average results of executing 100 samples,
and leave devices idle for cooling down before the next
run. DeTransformer is implemented atop of Pytorch with its
distributed communication package.

For baselines in performance experiments, we compare De-
Transformer with both single-device and two SOTA model
parallelism approaches. All cases are summarized as follows:

• Single Device: The model inference is executed on a
single device. We compare with it to analyze the scalability
of DeTransformer. Notably, the inference latency on a
single device of the original model and the decoupled

model is very similar through experiments, therefore we
treat them as the same baseline.

• TP: The tensor parallelism approach [5] that splits the
weight matrices, requiring two times of allreduce com-
munication in each Transformer layer.

• SP: The sequence parallelism approach [6] that splits the
input sequence, requiring two times of allgather commu-
nication in each Transformer layer.

• BP+Auto: This uses both block parallelism approach
and adaptive placement approach of DeTransformer for
distributed inference.

• BP+TP: Only block parallelism approach is employed,
and these original layers are parallelized using tensor
parallelism approach.

B. Model Accuracy Analysis

Table III shows the accuracy comparison between the de-
coupled models and the original models, illustrating the impact
of structure decoupling on model accuracy. Overall, these
decoupled models can achieve comparable accuracy results
to their original counterparts across most downstream tasks.
Additionally, it is noteworthy that the decoupling process does
not result in an enlargement of the model size. Consequently,
although there are some cases with decreased performance, the
structure decoupling in BP approach can achieve comparable
accuracy results without increasing model sizes.

Moving onto decoupled models with different number of
original layers, it is validated that decoupled models with more
original layers generally have better accuracy. Taking decoupled
Bert-Base with Ndiv = 4 and Nb = 1, 2, 3, 4 as the example,
as the number of original layers increases, the accuracy results
demonstrate an upward trend with slight fluctuations in most
tasks. Regarding decoupled models with varying number of
divisions, it is observed that a higher degree of division
generally results in lower accuracy. For decoupled Bert-Base
with Nb = 4 and Ndiv = 2, 4, 8, increasing Nb damages the
accuracy in most downstream tasks. The same phenomenon
can also be seen on Bert-large. In this way, we need to balance
these configurations based on specific requirements.

C. Inference Efficiency Analysis

1000 750 500 250 125
Bandwidth (Mbps)

0.0
0.5
1.0
1.5

No
rm

al
ize

d
 A

vg
. L

at
en

cy

(a) Bert-Base

1000 750 500 250 125
Bandwidth (Mbps)

0.0

0.5

1.0
(b) Bert-Large

1 2 4
Num of Devices

1.0

2.0

4.0

No
rm

al
ize

d
 A

vg
. L

at
en

cy

(c) Bert-Base

1 2 4
Num of Devices

1.0

2.0

4.0 (d) Bert-Large

Single
Device

BP+TP

TP

BP+Auto

SP

Linear

Fig. 7: Latency and throughput normalized to the single-device
baseline. Results of (c) and (d) are under 500Mbps. Linear
represents the ideal scaling.

TABLE IV: DeTransformer’s Speedup over TP and SP.

Bandwidth
(Mbps)

Bert-Base Bert-Large
TP SP TP SP

1000 1.25× 1.55× 1.14× 1.08×
750 1.31× 1.19× 1.19× 1.10×
500 1.46× 1.29× 1.26× 1.14×
250 1.94× 1.65× 1.57× 1.35×
125 2.81× 2.32× 2.03× 1.68×

1) Overall performance under various network conditions:
We conduct experiments on Bert-Base and Bert-Large using
4 devices under varied bandwidths, including 1000, 750, 500,
250 and 125Mbps. DeTransformer is configured with Nb = 4
and Ndiv = 4. Fig. 7 (a)(b) illustrates the normalized latency
results and Table IV shows corresponding speedup over TP
and SP. All experiments show that DeTransformer consistently
outperforms TP and SP with lower latency. Both TP and SP
show a negative optimization trend in network condition with a
bandwidth worse than 250Mbps, while DeTransformer remains
positively optimized even at a bandwidth of 125Mbps. For
example, distributing Bert-Base (l = 12) requires a total of 24
allreduce communications using TP approach. In comparison,
our decoupled models have 4 original layers and 8 decoupled
layers, and BP+TP approach only requires a total of 4 all-
gather and 8 allreduce communications. Thus, DeTransformer
can significantly reduce the communication overhead during
distributed inference.

Furthermore, comparing BP+TP with BP+Auto, it shows
that our adaptive placement approach can generate a better
placement plan, outperforming the fixed strategy under lower
network bandwidths. This advantage arises from the approach’s
ability to prioritize the placement plan with reduced communi-
cation frequency in such low network bandwidth conditions.

2) Scalability analysis: We select Bert-Base and Bert-Large,
and decouple them with Ndiv = 4 and Nb = 4 using
DeTransformer for comparing the strong scaling ability. We
choose 500Mbps bandwidth for it is a common setting in
edge scenarios. As illustrated in Fig. 7 (c)(d), BP+Auto of
DeTransformer demonstrates superior strong scaling ability to
TP and SP. Specifically, for Bert-Large, BP achieves 3.27×
inference latency reduction compared to the single-device
inference, while TP only achieves 2.58× inference latency
reduction under the same condition. Moreover, we observe that
Bert-Large shows better scaling results. This is because larger
models have a greater ratio of computation.

3) Impacts of the number of original layers: We further
compare DeTransformer’s performance under different Nb con-
figurations of decoupled Bert-Base on 4 devices. As in Fig. 8,
we observe that reducing the number of original layers leads
to improved performance. However, this optimization comes at
the expense of model quality, as indicated in Table III, posing
a trade-off between model accuracy and inference efficiency,
meeting our expectations for the analysis in III-C.

V. CONCLUSTION

Due to tightly-coupled structure, existing model parallelism
approaches are difficult to expose a high degree of model
parallelism in the distributed Transformer inference. In this

1000 750 500 250 125
Bandwidth (Mbps)

0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
ize

d
 A

vg
. L

at
en

cy Single Device
Nb = 4
Nb = 3
Nb = 2
Nb = 1

Fig. 8: Latency normalized to the single-device baseline of
different Nb configurations on Bert-Base using 4 devices.

paper, we propose DeTransformer, a communication-efficient
distributed in-suit Transformer inference system for edge sce-
narios. DeTransformer includes two optimization approaches,
namely the block parallelism approach and the adaptive place-
ment approach. Block parallelism restructures the original
Transformer layer with a single block to the decoupled layer
with multiple sub-blocks and exploits model parallelism be-
tween sub-blocks. With loosely-coupled Transformer models,
the adaptive placement approach finds the optimal placement
plan with the latency as the primary goal, under constraints
of communication capability, computing power and memory
budget. Experimental results demonstrate a speedup of up
to 2.81× compared to the state-of-the-art model parallelism
approach when distributing across 4 devices. Meanwhile, De-
Transformer achieves promising accuracy results on down-
stream tasks, equivalent to or even surpassing the original
Transformer model, without enlarging the model size.

ACKNOWLEDGMENT

This research was supported by the National Key R&D Pro-
gram of China 2021YFB0301300, and was also supported by
the Major Program of Guangdong Basic and Applied Research:
2019B030302002 and Guangdong Province Special Support
Program for Cultivating High-Level Talents: 2021TQ06X160
and Pazhou Lab Research Project: PZL2023KF0001.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[3] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient
distributed machine learning with the parameter server,” Advances in
Neural Information Processing Systems, vol. 27, 2014.

[4] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen et al., “Gpipe: Efficient
training of giant neural networks using pipeline parallelism,” Advances
in neural information processing systems, vol. 32, 2019.

[5] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[6] S. Li, F. Xue, C. Baranwal, Y. Li, and Y. You, “Sequence parallelism:
Long sequence training from system perspective,” in Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Jul. 2023.

[7] J. Du, X. Zhu, M. Shen, Y. Du et al., “Model parallelism optimization for
distributed inference via decoupled cnn structure,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 7, pp. 1665–1676, 2020.

[8] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural language
understanding,” arXiv preprint arXiv:1804.07461, 2018.

[9] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv preprint
arXiv:1606.05250, 2016.

