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ABSTRACT
Federated Learning (FL) has been a promising paradigm in dis-
tributed machine learning that enables in-situ model training and
global model aggregation. While it can well preserve private data
for end users, to apply it efficiently on IoT devices yet suffer from
their inherent variants: their available computing resources are
typically constrained, heterogeneous, and changing dynamically.
Existing works deploy FL on IoT devices by pruning a sparse model
or adopting a tiny counterpart, which alleviates the workload but
may have negative impacts on model accuracy. To address these
issues, we propose Eco-FL, a novel Edge Collaborative pipeline
based Federated Learning framework. On the client side, each IoT
device collaborates with trusted available devices in proximity to
perform pipeline training, enabling local training acceleration with
efficient augmented resource orchestration. On the server side, Eco-
FL adopts a novel grouping-based hierarchical architecture that
combines synchronous intra-group aggregation and asynchronous
inter-group aggregation, where a heterogeneity-aware dynamic
grouping strategy that jointly considers response latency and data
distribution is developed. To tackle the resource fluctuation during
the runtime, Eco-FL further applies an adaptive scheduling policy
to judiciously adjust workload allocation and client grouping at dif-
ferent levels. Extensive experimental results using both prototype
and simulation show that, compared to state-of-the-art methods,
Eco-FL can upgrade the training accuracy by up to 26.3%, reduce the
local training time by up to 61.5%, and improve the local training
throughput by up to 2.6×.
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Figure 1: An illustration of Eco-FL in smart home scenario,
in which each smart home as a participating client leverages
an edge collaborative pipeline over in-home trusted devices
to accelerate local model training in FL.
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1 INTRODUCTION
Federated learning (FL) is an emerging learning paradigm that is
able to exploit the distributed computing resources from multiple
clients for training a mutual Machine Learning (ML) model. Specif-
ically, in FL, each client provisions a local model counterpart and
uses its own data to learn model parameters, while a central server
aggregates updated parameters to train the global model and peri-
odically synchronizes with clients. By employing a wealth of clients
while physically isolating their private data and the central server,
FL provides a scalable mechanism for training ML models without
violating data de-sensitive protocols and is thus widely adopted in
a wide range of privacy-concerned edge intelligence applications
such as smart home and smart factory [19, 31].

Despite the advantages, applying FL in edge scenarios still suf-
fers from the inherent shortage of edge computing resources. In
particular, a significant yet inevitable issue is how to accelerate
deep neural network (DNN) training on resource-constrained IoT
devices, given its extremely computation-intensive and resource-
demanding nature. While traditional federated learning systems
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typically require participants to train a complete model locally, de-
vices with restricted computing capability can fall short in their
training speed, and may even fail to maintain a conventional train-
ing given their limited memory capacity. For instance, Andrew et
al. [8] point out that participating in FL for keyboard prediction
imposes a minimum available memory space of 2 GB. To address
that, existing literature [11, 28] have utilized model compression
techniques such as pruning and quantization, to reduce the comput-
ing and memory overhead for IoT devices. These methods, however,
are all modifying the network architectures or model parameters,
which may defect the model test accuracy as well as FL’s training
convergence. Alternatively, we observe that in typical edge scenar-
ios like smart home, there are usually a number of trusted devices
(e.g., owned by family members) in physical proximity that can
share their idle resources with the participating client in FL. This
therefore motivates us to take advantage of computing resources
across edge devices to accelerate the FL’s client training, namely
edge collaboration.

To achieve that, we propose to leverage the pipeline parallelism
to orchestrate the edge collaboration for model training accelera-
tion. As illustrated in Fig. 1, for each smart home, we can split a DNN
model in layer granularity, dispatch layer-wise training workloads
to in-home domestic devices, and launch a distributed computing
pipeline across them. While edge collaboration can mitigate the
resource restriction, applying pipeline training over multiple edge
devices is non-trivial, given the following challenges. 1) Hetero-
geneity: In practical deployment, the available trusted devices that
a participating client can collaborate with usually vary, inducing
issues of system heterogeneity. Some state-of-the-art works adopt
grouping-based architecture [1, 2], which clusters clients with sim-
ilar response latency into groups and performs semi-synchronous
model aggregations. However, these grouping methods ignore the
data distribution of each client, which may result in severe per-
formance degradation due to unbalanced and non-independent
and identically (non-IID) data distribution across groups, namely
data heterogeneity. 2) Dynamics: IoT devices in edge deployments
like smart home usually accomplish high variation in available
resources, heavily depending on the usage habits and purposes of
their users [13, 30]. Worse still, edge collaborative training may
involve a great magnitude of IoT devices into the whole FL system,
which further exacerbates the resources dynamics. Since the max-
imum performance of pipeline training is limited by the slowest
device, fluctuation of available resources for IoT devices will se-
verely affect the throughput of collaborative training as well as the
response latency of the FL participating clients. This can largely
disable the existing static optimization methods for FL and further
affect the convergence performance of the global model.

To address these challenges, we propose Eco-FL, a novel Edge
Collaborative pipeline based Federated Learning framework. Eco-
FL envisions an edge environment where a client can have multiple
trusted devices in proximity and they are willing to cooperate to
accelerate local model training. This can be relevant in many edge
scenarios such as smart home and smart factory, wherein the de-
vices are managed by the same owner or possessed by trusted users.
With such dependable resources, Eco-FL conquers the above prob-
lems on three levels. First, to orchestrate heterogeneous assisted
devices in maximal resource utilization to facilitate local model

training, Eco-FL maintains a pipeline by partitioning DNN models
into successive segments and dispatching them among devices. In
particular, Eco-FL designs a heterogeneity-aware workload parti-
tioning mechanism with memory capacity constraints into con-
sideration, running prior to deployment. Second, Eco-FL adopts a
grouping-based hierarchical model aggregation mechanism, along
with a novel grouping strategy that simultaneously accounts for
clients’ response latency and data distribution divergence. Last
but not least, Eco-FL develops adaptive schemes to accommodate
dynamics during the runtime. Specifically, a workload migration
strategy is devised to alleviate the pipeline bottleneck under re-
source fluctuation, effectively retaining the training throughput
even with external load spikes. A dynamic regrouping method is
further employed to avoid the occurrence of stragglers in faster
groups, maintaining a high aggregation frequency and training
performance. The main contributions of the paper are summarized
as follows.

• We devise a novel edge collaborative pipeline parallelism
as a key mechanism to achieve edge resource pooling over
trusted devices in proximity for local FL model training ac-
celeration. To accommodate the heterogeneous and resource-
constrained nature of edge devices, a resource-efficient
pipeline strategy is developed, as well as a heterogeneity-
aware workload partitioning and scheduling mechanism for
efficient pipeline training.
• We propose Eco-FL, a hierarchical FL system framework
that builds upon the edge collaborative pipeline model train-
ing. To tackle system heterogeneity and data heterogeneity
exacerbated by edge collaboration, a novel grouping-based
hierarchical aggregation mechanism is designed that jointly
considers both the response latency and data distribution
divergence.
• We feature adaptive scheduling in both FL server and client
sides to tackle system dynamics inherent in edge scenarios,
which allows flexible workload migration across edge de-
vices for pipeline efficiency and dynamic re-grouping for FL
training speed-up.
• We implement Eco-FL, and conduct extensive evaluations in
both realistic testbeds and large-scale simulations. Experi-
mental results show that Eco-FL can upgrade the training
accuracy by up to 26.3%, reduce the local training time by
up to 61.5%, and improve the local training throughput by
up to 2.6× against state-of-the-art baselines.

2 BACKGROUND AND RELATEDWORK
Federated learning. Federated Learning (FL) is an emerging dis-
tributed learning paradigm that can train a global, shared model
without accessing clients’ private data. Formally, the FL algorithm
optimizes the objective function F (w) =

∑N
c=1

|Dc |
|D |

Fc (w), where
Fc (w) =

1
|Dc |

∑
i ∈Dc fi (xi ,yi ;w) is the local loss function of client

c and fi is the loss function for data sample {xi ,yi }. N is the total
number of clients, Dc and D are the dataset of client c and the
global datase, respectively. Despite the advantages in privacy preser-
vation, FL’s efficient deployment in IoT environments is yet up
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Figure 2: Overview of Eco-FL framework. Eco-FL adopts a hierarchical architecture in which each participant group (i.e., a
cluster of smart homes) first performs fast synchronous aggregation intra-group, and then elastic asynchronous aggregations
among the groups are performed to obtain the globalmodel. At each smart home, an edge collaborative pipeline is constructed
to orchestrate available trusted edge devices for local training acceleration.

against critical challenges incurred by system and data heterogene-
ity [12]. In particular, system heterogeneity in computing resources
(such as memory capacity, hardware configurations, etc.) can exac-
erbate challenges such as the straggler problem, which is negative
to the performance of synchronous updating. Data heterogeneity
stems from the diverse distributions of IoT devices’ data, where
the non-IID characteristics can seriously harm the convergence of
model training [21, 24, 25]. State-of-the-art methods usually adopt a
hierarchical architecture [1–3] to conquer one of the heterogeneity
issues, but a joint consideration in both system and data aspects
still lacks exploration. Instead, Eco-FL proposes an adaptive client
grouping strategy to alleviate the problem.

DNN training on edge devices. Training DNNmodels on edge
devices can fully reserve data in situ, and is therefore employed
in many privacy-sensitive applications. However, its computation-
intensive and resource-demanding nature brings significant chal-
lenges to resource-constrained IoT devices. To address this, existing
arts [11, 28] usually target a tiny model through model pruning and
compression, which can reduce the workload yet largely decline
the model accuracy undesirably. Meanwhile, the increased number
of IoT devices has led to another scheme that parallelizes training
across multiple devices [7, 29]. For instance, Hao et al. [7] adopts
data parallelism training across embedded devices cluster, which re-
quires each device to accommodate a replica of the entire model and
frequently synchronizes their weights. Given the limited bandwidth
between edge devices, such parallelism may induce considerable
transmission overhead and slow down the complete training, which
motivates us to leverage other collaborative mechanisms.

Pipeline parallelism. Pipeline parallelism is a training strategy
that trains DNNmodel in a pipelinedmanner across multiple agents.
By overlapping the communication and computation, it can achieve
higher training throughput than traditional data and model paral-
lelisms. In particular, PipeDream [20] proposes an asynchronous
pipeline with a one-forward-one-backward strategy (1F1B-Async),
where a forward pass is executed followed by a backward pass.
While such an asynchronous strategy minimizes devices’ idle time
occupancy, it requires maintaining multiple historical versions of
the model to avoid weights mismatching in forward and backward
passes, which is unaffordable formemory-limited IoT devices. Gpipe

[9] employs a synchronous pipeline with backward-after-forward
strategy (BAF-Sync). Its pipeline accumulates the gradient of each
micro-batch and updates the model after finishing all backward
passes. This synchronous strategy does not require multi-version
backups, but is still memory-consuming since the activations pro-
duced by forwarding tasks have to be kept for all micro-batches
until backward tasks begin. Eco-FL instead tames this problem by
designing a memory-efficient pipeline strategy with one-forward-
one-backward synchronous training (1F1B-Sync), which is much
more resource-friendly for the edge computing scenarios.

3 ECO-FL FRAMEWORK OVERVIEW
Fig. 2 depicts an overview of the proposed Eco-FL framework in
smart home scenario. In principle, Eco-FL adopts a grouping-based
hierarchical FL architecture that conducts fast model aggregation
(§5.1) from FL participants with similar capability in the same group
and next carries out elastic asynchronous model aggregations from
the heterogeneous groups at the Eco-FL server. Particularly, the
participants, e.g. smart homes in the figure, are divided into groups
according to their response latency per training round as well as
the distribution of their local data. The rationale behind that is to
take system heterogeneity and data heterogeneity into joint consid-
eration, such that the overall training convergence is ameliorated.
This is accomplished by the grouping scheduler (§5.2), which is
capable of generating grouping decisions and dynamically adapts
during the runtime.

As illustrated in Fig. 2, to accelerate the local model training at
each smart home, we exploit trusted and idle edge devices within
the home, and leverage a resource-efficient paradigm of pipeline
parallelism to orchestrate their execution flow (§4.1). Specifically,
the DNN model is partitioned into a series of successive layer seg-
ments, which are dispatched to multiple devices to constitute the
pipeline. To bridge the pipeline with the overall FL flow, we select
one of the devices in the collaboration to be the portal node that is
responsible for scheduling the pipeline, collecting updated models,
and communicating with the Eco-FL server. Within the pipeline,
a workload partitioner (§4.2) is employed to align model layers
to diverse devices’ capabilities by considering computation and
communication heterogeneity, aiming at maximizing the training
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throughput. Besides, a pipeline scheduler is further designed that
manages pipeline configurations such as devices’ order and input
batch size (§4.3), such that overall resource utilization is maximized.
Runtime dynamics, e.g. resource fluctuation due to the external load,
is also accounted for by applying dynamic profiling and workload
migration (§4.4). We note that different from traditional FL where
a single device acts as a participant, Eco-FL targets at a novel sce-
nario wherein each participant is a whole smart-homewithmultiple
trusted and collaborative devices. In this case, data are transmitted
locally only within one home instead of multiple homes, and hence
privacy protection of Eco-FL is still guaranteed. With the above
modules, Eco-FL focuses on the following design goals:

• A grouping-based hierarchical FL aggregation mechanism
that can simultaneously tackle system heterogeneity and
data heterogeneity for fast training convergence and up-
graded test accuracy.
• An efficient collaborative pipeline for local model training
that is able to accommodate the heterogeneous device re-
source constraints in the edge computing environment.
• An adaptive scheduling design that is capable of coping
with dynamic edge resource variations, by re-organizing the
training pipeline and participants’ grouping.

We next explain the design details that attain the goals, in terms
of the local training pipeline modules (§4) and FL aggregation mod-
ules (§5).

4 COLLABORATIVE EDGE TRAINING VIA
PIPELINE PARALLELISM

4.1 Resource-Efficient Pipeline Strategy
To accelerate the local model training in Eco-FL, a participant client
can leverage multiple available and trusted devices in proximity
(e.g., smartphones and laptops at home) to perform collaborative
model training. To exploit available resources from multiple de-
vices, existing arts [7, 10, 29] usually apply data parallelism and
model parallelism. While these traditional wisdom act well for a
cluster of powerful machines with high-speed links (e.g., GPU/TPU
accelerators in a datacenter), it can fall short in edge computing
environments, where edge devices are typically loosely coupled
with wireless connections [31]. The large volume of intermediate
data exchange in data and model parallelism can thus severely
bottleneck the entire training flow within devices’ synergy. As
we will show later in §6.3, the transmission overhead can occupy
66.29% in data parallelism and even perform worse in throughput
metrics than single device training. This motivates us to leverage
pipeline parallelism (as illustrated in Fig. 2), which segments DNN
models in layer granularity and dispatches workload among de-
vices in a successive manner. By judiciously partitioning layers and
overlapping communication with computation, pipeline parallelism
can effectively hide the transmission overhead and boost training
throughput.

Nonetheless, applying pipeline parallelism over edge devices
is non-trivial, given their inherent resource-constrained nature,
e.g., limited in processors’ capability and memory capacity [31]. For
pipeline execution across these devices, we highlight memory usage
as a crucial knob, which stringently restricts the size of training
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Figure 3: An instance of edge collaborative pipeline with
three devices (i.e., stages).

batches and the concurrent resident activations, and thus bounds
the system throughput. This therefore requires a tailored memory-
efficient optimization to match edge devices’ available resources.
To tackle such an issue, we adopt a novel synchronous pipeline
strategy that works in a one-forward-one-backward (1F1B-Sync)
fashion . Specifically, as shown in Fig. 3, 1F1B-Sync splits a mini-
batch into severalmicro-batches, and injects them concurrently
into the pipeline for maximizing the degree of parallelism. We
name the training process of one mini-batch as a sync-round and
the synchronous model update as pipeline flush. DNN model are
partitioned across the IoT devices with each device undertaking the
forward pass (FP) and backward pass (BP) for only a subset of the
global model. Meanwhile, 1F1B-Sync employs the early backward
schedule to release the memory produced by forward tasks early
for reuse, which helps memory-constrained devices accommodate
more micro-batches to hit a high degree of parallelism. In contrast
to PipeDream [20] and Gpipe [9] discussed in §2, 1F1B-Sync does
not store historical model versions, and employs the early backward
schedule to release thememory produced by forward tasks for space
reuse. This enables 1F1B-Sync to be memory-efficient, and accords
with the requirement of edge collaboration.

4.2 Heterogeneity-Aware Workload
Partitioning

To perform pipeline training, we need to divide the model layers
into multiple segments such that each device executes a model
segment as a pipeline stage. The global throughput of the pipeline
is determined by the execution time of the slowest stage (lagger).
The lagger will starve other faster stages and lead to an idle bub-
ble (i.e., idle waiting time), resulting in resource under-utilization.
Meanwhile, we need to consider communication delay inter-stage
because although communication can be overlapped with compu-
tation, excessive communication delay can also degrade pipeline
performance.

To partition the model into separate balanced stages, we leverage
the idea of dynamic programming [20] and develop an optimized
and tailored algorithm to support heterogeneous IoT environments
by evenly distributing the DNN workload based on the computa-
tion capacity of heterogeneous devices. Specifically, our algorithm
consists of two phases, namely profiling and workload partitioning.

Profiling. Pipeline profiler will monitor the total computation
time across the FP and BP for layer l on d-th devices, denoted asTdl .
While profiling the computation time, the profiler will also record
the output activations, input gradients and weight parameters of
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layer l in bytes, respectively denoted as al , дl andwl . We use Bn to
indicate the bandwidth between device n and device n + 1.

Workload partitioning.We denoted Dn = {d0,d1, ...dn−1} as
the set of first n devices in pipeline. A(i → j,Dn ) denote the time
taken by the lagger in the optimal sub-pipeline between layer i to j
with Dn devices. T (i → j,n) denotes the time taken by n-th device
spanning layers i through j.

The goal of our algorithm is to findA(0→ L, |D|), where L is the
total number of layers in the model andD is the set of all IoT devices
involved in pipeline parallelism. To solve this partitioning problem,
we can break the optimal pipeline into sub-pipelines and optimize
them recursively with the dynamic programming algorithm. The
formula of the dynamic programming algorithm can be written as:

A(0→ j,Dn ) = min
1⩽s<j

max


A(0→ s,Dn−1),
(as + дs )/Bn−2,
T (s + 1→ j,n − 1),

(1)

where T (i → j,n) =
∑j
l=i T

n
l . Ideally, the dynamic programming

algorithm will output a partitioning point of the DNN model bal-
ancing both training workload on each stage and inter-stage com-
munication delay.

4.3 Pipeline Orchestration
We next elaborate on the scheduling optimization for our pipeline.
To simplify the difficulty of scheduling and modeling, following
[6, 9, 20], we assume that: (1) our workload partitioning algorithm
outputs a balanced pipeline, which means the execution time of
micro-batches in each stage are equal. (2) Inter-stage communi-
cation delay of activations/gradients can be well overlapped by
the FP/BP execution time of micro-batches, which is reasonable
because we will not choose pipeline parallelism to train the DNN
models with huge inter-stage activations.

Pipeline bubble analysis. To maximize the throughput of the
pipeline, we want to minimize the idle bubble of each stage. We
divide the idle bubbles in the synchronous pipeline into two types,
as shown in Fig. 4. We name the first type of bubble as Synchronous
Static Bubble (SSB). This type of bubble is caused by the periodic
pipeline flush, which is inevitable in synchronous strategy. We
name the second type of bubble as Data Dependency Bubble (DDB),
which is caused by the data dependency of micro-batches in pipeline
training.

Micro-batch scheduling to minimize bubbles. We denote S
as the total number of stage, where S > 1. Let T st,f and T st,b denote
the total time taken by stage s for FP and BP, respectively, where
s ∈ {0, 1, ..., S − 1}. T sc,f and T sc,b denote the communication time
between stage s and s + 1 in FP and BP, respectively. As shown in
Fig. 3, we can observe that computation and communication in a
sync-round form a trapezoid. Therefore, SSB in each stage are same
and can be calculated by counting the bubble before the first FP
and after the last BP in the last stage:

SSB =
S−2∑
s=0
(T st,f +T

s
t,b +T

s
c,f +T

s
c,b ). (2)

We can reduce the proportion of the time SSB occupies by increasing
the number of micro-batches injected in the pipeline concurrently
(M) in a sync-round.
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Figure 4: Examples of pipeline with different Ks .

DDB is originally caused by the data dependency of the tasks in
the pipeline. Due to the limited memory available in IoT devices, we
may not be able to execute all FP before executing BP as Gpipe does.
Adopt 1F1B-Sync can reduce peak memory consumption but have
the potential to causemoreDDB and degrade the performance of the
pipeline. Therefore, we need to schedule the pipeline to minimize
memory usage while maintaining a high throughput. Actually, as
shown in 3, if we well control the number of forward task residing
concurrently in each stage, we can avoid the occurrence of DDB
while releasing memory pressure of each stage.

To find a set {P0, P1, ..., PS−1} that can minimize both DDB and
the peak memory usage of each stage. We purpose an iterative
approach to calculate the Ps from the last stage:

Ps−1 ≥ Ps +
T st,f +T

s
t,b +T

s
c,f +T

s
c,b

T s+1t,f +T
s+1
t,b

, (3)

when s = S − 1, Ps = 1. We derive this inequality based on ideal
model of pipeline in Fig. 3. To eliminate DDB in stage s , we need to
make sure that before stage s − 1 finish and send the Ps−1-th FP to
stage s , stage s is not starved for waiting task. Because we iteratively
calculate from the last stage, there will be no DDB in sub-pipeline af-
ter stage s when we calculate Ps−1. We denote set {P0, P1, ..., PS−1}
satisfying (3) as the optimal set of number of forward tasks resid-
ing concurrently on each stage in pipeline. According to (3), for
some workloads where inter-stage communication delays can be
ignored compared with forward and backward execution time, we
calculate with Ps = S − s for stage s . In IoT environment, limited
bandwidth between IoT devices makes inter-stage communication
delays non-negligible, thus we calculate with Ps = 2(S − s) − 1 for
stage s .

Schedule devices’ order in pipeline. To maximize the
throughput of the pipeline, we want to pick up a devices’ order
resulting in the least sync-round time. If there are no DDB in the
pipeline, we can estimate the time of a sync-round by the sum ofM
micro-batches total execution time and SSB. However, in practice,
IoT devices with limited available memory even may not be able
to accommodate enough forward tasks to avoid the occurrence of



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Shengyuan Ye, et al.

0 5 10 15 20 25
Throughput (sample/s)

Config. A

Config. B

Config. C

0 1 2
Stage Index

20

40

60

80

Av
g.

 G
PU

 U
til

iza
tio

n 
(%

)

Config. A
Config. B

Config. C

Figure 5: Pipeline performance of different configurations.
Configuraton A means the devices’ order of ⟨TX2, Nano,
Nano⟩ with a micro-batch size (mbs) as 16, Configuration B
is ⟨Nano, TX2, Nano⟩ with mbs = 8, and Configuration C is
⟨Nano, TX2, Nano⟩ with mbs = 16.

DDB. We denote Ks =min(Ps ,Qs ) as the actual number of forward
tasks residing in stage s in pipeline run-time, where Qs is the max-
imum number of FP that can be accommodated in the available
memory of stage s . If any stage s can not accommodate Ps forward
task, DDB will occur, as shown in Fig. 4.

As we know, the throughput of the pipeline is greatly dependent
on the narrowest stage, namely bottleneck. As shown in Fig. 4(b),
stage 0 is more of a bottleneck in the pipeline than stage 1 because of
that even if stage 1 can hold three forward tasks concurrently (DDB
1will be eliminated), stage 2 still need towait for timeDDB1+DDB2,
since forward task 3 has not yet arrived. In Fig. 4(a), when K0 = 4,
stage 1 is more of the bottleneck of this pipeline than stage 1. We
can empirically observe that the occurrence of DDB is periodic
and related to the width of the bottleneck. Therefore, it is obvious
that the proportion of DDB can not be reduced by injecting more
micro-batches concurrently into a sync-round like SSB and these
recurring DDB will generate periodically unavoidable idle bubbles
in each stage, which can extremely degrade the performance of the
global pipeline.

A smaller micro-batch size may allow each stage to accommodate
more forward tasks. However, too tiny micro-batch size will result
in the under-utilization of computational resources and may not
well overlap the communication delay. We conduct an experiment
on EfficientNet with a three-stage pipeline consisting of one TX2
and two Nano to inspect the pipline performance under different
devices’ orders, as shown in Fig. 5 (experimental settings are elabo-
rated in §6.1). EfficientNet is composed of convolutional layers and
large activations mostly concentrated in the front of networks. If
we use Nano with smaller memory to undertake stage 0, we can
only choose a smaller micro-batch size (Config. B) or a smaller K0
while keeping the same batch size (Config. C). We observe that both
Config. B and Config. C lead to a low GPU utilization and degrade
the throughput of the pipeline.

To avoid the occurrence of DDB while maximize the size of
micro-batch, we will start the search from a relatively large micro-
batch size. If all devices’ order can not satisfy Ks = Ps , we will
appropriately reduce the micro-batch size until there exists a device
order that can accommodate enough forward tasks in each stage.

4.4 Adaptive Pipeline Re-scheduling
Existing distributed on-device training usually statically partitions
training workload among the training workers [6, 9, 20]. However,

l0 → l3 l4 → l7 l8 → l11 l12 → l16

l0 → l4 l5 → l9 l10 → l14 l15 → l16

Workload Migration

Re-Schedule
Lagger

 l4  l8 , l9  l10 , l11

Reordering  l15 , l16

Figure 6: Towards the lagger in the pipeline, the scheduler
boosts the pipeline performance bymigratingworkload and
reordering devices.

this static partitioning approach is not suitable for the IoT environ-
ment because of two reasons. First, IoT devices usually have high
variation in available computing capability and memory resources.
Second, the maximum throughput of the pipeline is greatly deter-
mined by the lagger, and fluctuation in the execution time of any
stage will seriously affect the overall throughput of the pipeline.

To solve the above problems, we adopt an adaptive workload
migration strategy. Each training worker will periodically report
to the portal node the execution time of FP and BP. If the portal
node detects a large deviation between the current and historical
execution time of any device, it will adaptively re-schedule the
pipeline and generate a new configuration including devices’ or-
der and workload partitioning point. All devices will do workload
migration concurrently according to the new scheduling configura-
tion, as shown in Fig. 6. After the workload migration is completed,
the portal node will notify the head node in the pipeline to restart
the training.

5 GROUPING-BASED HIERARCHICAL FL
AGGREGATIONS

5.1 Hierarchical Federated Learning
Mechanism

After obtaining the local models by edge collaborative pipeline
training from the FL participating clients (e.g., smart homes), the
remaining key issue is how to efficiently aggregate the local models
to derive a global model in a fast manner. Nevertheless, the avail-
able computing capability that each client can collaborate with may
vary dramatically in practice, which could induce severe system het-
erogeneity issues. Existing synchronous FL solutions [17, 21] that
synchronously aggregate clients’ model updates can achieve high
training accuracy, but the slowest client can significantly prolong
the training time when stragglers occur. Alternatively, asynchro-
nous FL approaches [27] can effectively alleviate the straggler issue,
but it only aggregates the updated model from one client at a time,
introducing biases while sacrificing the global model accuracy and
convergence speed. To combine the best of both mechanisms, we
propose to adopt a hierarchical scheme with clients separated into
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multiple groups. Specifically, as described in the left part of Fig.
2, the aggregation is performed in two levels: first a synchronous
aggregation is applied to aggregate model updates from the clients
within the same group, and next an asynchronous aggregation is
made for global model aggregation among different groups.

Specifically, we denote that the set of all clients are classified into
|G| groups: G = {д0,д1, ...,д |G |−1} and we denote the set of clients
in group д as Cд . In each synchronous round, a client c ∈ Cд will
perform local training using the pipeline strategy above with its
collaborative devices, and then synchronizes with sync-aggregator
after every e steps of local updates. We denotewд

c (tc ) as the local
model of client c after tc -th update andwд(tд) as the group model
after tд-th update. At the beginning of each synchronous round,
both tc and tд are initialized with 0 and wд(tд) is equivalent to
the current global model. Dд

c and Dд are denoted as dataset of
client c and aggregated dataset under group д, respectively. The
intra-group synchronous model aggregation process is as follow:

w
д
c (tc ) =


w
д
c (tc − 1) − η∇h

д
c

(
w
д
c (tc − 1)

)
, tc mod e , 0,∑

c∈Cд |D
д
c |[w

д
c (tc−1)−η∇h

д
c (w

д
c (tc−1))]

|Dд |
, tc mod e = 0,

where hдc
(
w
д
c (tc )

)
= F

д
c

(
w
д
c (tc )

)
+

µ
2
wд (

tд
)
−w

д
c (tc )

. Follow-
ing FedProx[21], we add a proximal term to the local loss function
F
д
c to alleviate the data heterogeneity issue during the intra-group
synchronous process. For the asynchronous model aggregation pro-
cess from the groups, we utilize FedAsync [27]: In the k-th global
update, async-aggregator receives a new group modelwд

new from
an arbitrary group д, and updates the global model by weight av-
eraging: w(k) = (1 − α)w(k − 1) + αwд

new , where α ∈ (0, 1) is the
mixing hyperparameter which is related to the staleness of group
models and can be fine-tuned globally.

5.2 Adaptive Client Grouping
The divergence of grouping strategy and the data distribution of
clients will have a significant impact on the global model conver-
gence and accuracy [3, 18]. Based on the proposed hierarchical
architecture, Eco-FL adopts a heterogeneity-aware client grouping
strategy considering both response latency and data distribution to
strike a balance between system and data heterogeneity. Due to the
high variation of the response latency of participating clients, the
Eco-FL server will continuously collect the response latency of all
clients and dynamically re-schedule group members to maintain a
decent throughput of the global FL system. Particularly, our adap-
tive grouping strategy consists of three phases: profiling, initial
grouping, and dynamic re-grouping.

Profiling. Eco-FL server will profile the response latency and
data distribution of each client, denoted as {L0,L1, ...LN−1} and
{π0,π1, ...,πN−1}, respectively. Response latency of a client is com-
posed of the computing latency for local training and the commu-
nication latency with the Eco-FL server. The data distribution of a
client records the proportion of different labels on the local dataset.

Initial grouping. After profiling the response latency and data
distribution of each client, the Eco-FL server will start to group
clients. The principle of grouping is to let the response latency of
the members in the group be as close as possible while having an

Algorithm 1: Adaptive Grouping Process
1 Process Eco-FLServer():
2 Collect and monitor response latency of each client;
3 if Client n in group д satisfy |Lд − Ln | > RTд then
4 Regroup(n);
5 end
6 Function Regroup(n):
7 MinCost← +∞, t ← −1;
8 for д ∈ {0, 1, ..., |G| − 1} do
9 if COSTдn < MinCost and |Lд − Ln | ≤ RTд then
10 t ← д;
11 MinCost← COSTдn ;
12 end
13 end
14 if t , −1 then
15 Move client n to group t ;
16 else
17 Drop out client n until its response latency Ln meets

the threshold range of any group;
18 end

associated data distribution as close as possible to the IID distribu-
tion πiid. We define a cost function (4) to strike a balance between
response latency and data distribution:

COSTдn = |Lд − Ln | + λJS
(
π
д
n ,πiid

)
, (4)

where Lд is the central response latency of group д. We use Jensen-
Shannon (JS) divergence [16] based on Kullback-Leibler (KL) diver-
gence to quantify the dissimilarity between IID distribution and
union data distribution of group д and client n. JS divergence has
the advantage of symmetry and normalized values between [0, 1]
over KL divergence.

At the beginning of grouping, we use K-means algorithm [15]
to cluster clients based on their response latency and denote Lд
as the average value of each group д. We note that the clustering
algorithm adopted and the number of groups to cluster can be
properly adjusted according to the actual distribution of clients in
Eco-FL. Then, the Eco-FL server will pick a client with the smallest
cost for each group in turn until nobody in the client pool can be
associated with any group. Every time we associate a new client
with a group, we will update the current data distribution of the
group and remove the client from the client pool. To avoid severe
straggler issues, we can set a response latency threshold RTд for
each groupд. If |Lд−Ln | > RTд , we will not associate the client into
group д, even if it has the smallest cost. Finally, the unassociated
clients in the client pool will be dropped out temporarily, until their
response latency returns to the threshold range of any group.

Dynamic re-grouping. As aforementioned, the response la-
tency of each client can be varying greatly occasionally due to the
significant changes in its collaborative device resources or the net-
work conditions, which forces us to dynamically re-schedule group
members accordingly during run-time to maintain a stable system
performance. Therefore, the Eco-FL server will continuously collect
and monitor the response latency of each client in run-time. If any
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client n in any group д satisfy |Lд − Ln | > RTд , Eco-FL server
will calculate the cost between the client and all groups based on
(4). Then, this client will be recombined to the new group t with
smallest cost if |Lt − Ln | ≤ RT t . If we can not find an appropriate
group to accommodate the client, it will be temporarily dropped
out as we mentioned before. We summarize our adaptive grouping
process in Algorithm 1.

6 EVALUATION
6.1 Experimental Setting
We implement and evaluate our proposed Eco-FL system using
both a realistic prototype and large-scale simulation. Specifically,
we build a testbed with representative edge devices in Table 1, and
use the recorded parameters in realistic experiments to assist the
numerical FL simulationwith hundreds of clients.We next elaborate
on the detailed setup of them.

Experimental settings for FL training.We deploy the Eco-FL
server and client worker on a virtual machine instance (48 vCPUs
and 64GB memory) and each client gets assigned 2 CPU cores. We
evaluate 300 clients in FL and for each training round, we will se-
lect at most 20 clients concurrently. The same DNN models are
employed as in FedAVG [17] on CIFAR-10 [4], Fashion-MNIST [26]
and MNIST [5] datasets. The hyperparameters follow the config-
uration: local epoch = 3, batch size = 10, learning rate = 0.0001,
proximal term parameter in local subproblem µ = 0.05. To simu-
late the system heterogeneity in a real IoT environment and the
different computation resources that each client can utilize, we
add different response delays to each client. We first sample the
original response delay for each client from a normal distribution.
Then, each client is randomly assigned a collaborative degree
from {0.2, 0.4, 0.6, 0.8, 1.0} and the actual delay of each client is
the product of the original delay and collaborative degree. We use
K-means methods to associate them into 5 response latency groups
(RLG). In a hierarchical FL system, there are two levels of non-
IIDness. To simulate data heterogeneity in an IoT environment, we
generate a non-IID data distribution for each client where the sam-
ples in each client are only assigned from two random classes. To
verify the robustness of our grouping method, we further consider
the following two non-IID cases for MNIST:
• RLG-IID: Assign clients to each RLG with all 10 kinds of
classes and the data distribution of each RLG is IID distribu-
tion.
• RLG-NIID: Assign clients to each RLG with 3 classes of
labels. This can be relevant in many realistic scenarios, e.g.,
businessmen of certain areas usually possess devices with
higher computing capability and have similar behavioral
characteristics [14].

To simulate the random variation of available computing re-
sources in edge collaboration environments, we consider a dy-
namic setting where each client in Eco-FL periodically changes
the collaborative degree in a determined probability.

Experimental settings for pipeline experiments.We evalu-
ate our edge collaborative pipeline on realistic edge devices, where
Table 1 summarizes the hardware configurations of them. Jetson
Nano and Jetson TX2 collaboratively perform parallelism training.
By adjusting the power mode of Nano and TX2, we can effectively

Table 1: Specifications of the used edge devices.

Hardware Power Mode GPU Max
Frequency Memory Network

Bandwidth

Jetson Nano 5W (L) 640MHz 4GB 100Mbps10W (H) 921.6MHz

Jetson TX2 Max-Q 850MHz 8GB 100MbpsMax-N 1.3GHz

simulate four kinds of heterogeneous devices with combinations of
different computation capacities and available memory. For conve-
nience, we use Nano-L and Nano-H to represent two power modes
of Nano while TX2-Q and TX2-N indicate two power modes of
TX2, respectively. Our evaluation is performed under a 100Mbps
network environment to emulate a typical network condition in
prevalent IoT environments [7]. Two widely-adopted DNN models
on mobile IoT devices are employed:
• EfficientNet [23]:A convolutional neural network architec-
ture adopts a compound scaling method that can be properly
scaled up on both width and depth for better accuracy. In our
experiment, we will adjust compound coefficient parameters
(B) according to our requirements.
• MobileNetV2 [22]: A convolutional neural network
architecture that is specifically tailored for IoT and
resource-constrained environments. It has a tunable hyper-
parameter named width multiplier (W) to achieve accu-
racy/performance trade-offs.

Baselines.We compare Eco-FL with both the traditional base-
line method and grouping-based hier-architecture method:
• FedAvg [17]:Abaseline FLmethodwith synchronous aggre-
gation strategy. At each round, it randomly selects a certain
ratio of clients for local model training and global model
aggregation.
• FedAsync [27]:Abaseline asynchronous federated learning
algorithm that updates the global model without waiting for
straggling clients.
• FedAT [2]: A hierarchical FL scheme that associates client
into different tiers based on their response latency and per-
forms synchronous intra-tier training and asynchronous
inter-tier training.
• Astraea [3]: A hierarchical FL scheme that alleviates local
data imbalance by grouping clients into clusters with bal-
anced data. Since Astraea adopt a synchronous process on
both global and group level, for a fair comparison, we only
compare with its client grouping method.

6.2 Federated Learning Performance
Training Performance. Fig. 7 illustrates the performance of dif-
ferent training methods on CIFAR-10 and Fashion-MNIST datasets,
all under the same dynamic settings. We observe that Eco-FL signif-
icantly outperforms the FedAvg and FedAsync baselines with faster
convergence and higher achieved accuracy, which attributes to the
hierarchical architecture of Eco-FL and the heterogeneity-aware
adaptive client grouping strategy. Fig. 7 also witness that both Eco-
FL without dynamic grouping strategy (w/o DG) and FedAT will
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Figure 7: Training performance of Eco-FL and other FL ap-
proaches with different datasets.

suffer from straggler issues and cause distinct performance degra-
dation under the dynamic setting. And the dynamic issue will be
further magnified in a real scenario when more clients are involved
in each training round. In contrast, Eco-FL with the adaptive sched-
uler can still maintain a decent performance under the dynamic
setting because it will monitor clients’ run-time response latency
and dynamically adjust clients to appropriate groups. Regardless
of the scheduler, Eco-FL without DG still outperforms FedAT by
applying our heterogeneity-aware grouping strategy.

Effectiveness of grouping. Fig. 8 examines the effectiveness
of Eco-FL’s grouping strategy with other state-of-the-art grouping-
based FL methods, by experiments on both RLG-IID and RLG-NIID
settings with MNIST. On RLG-IID setting, both Eco-FL and FedAT
can achieve a fair training performance since the data distribu-
tions across groups are relatively uniform and the synchronous
process of faster groups will not be dragged down by straggler is-
sues. Conversely, Astraea’s grouping strategy ignores the response
latency, which may combine the fast and slow clients into the same
group and induce straggler problems. On RLG-NIID setting, Fe-
dAT groups clients only considering response latency, which leads
to an extremely unbalanced data distribution across each group.
Although FedAT assigns a higher weight to slower groups when
updating the global model to relieve the biased toward the faster
groups, it still shows poor convergence performance under severe
imbalanced data distribution. Both Eco-FL and Astraea grouping
methods achieve a comparable decent convergence performance
because they both consider the data heterogeneous issue between
each group. Specifically, Eco-FL can upgrade the training accuracy
by up to 26.3% compared to FedAT. Moreover, for clients with simi-
lar data distribution, our method will preferentially select the client
with response latency closer to the group center, which brings an
faster convergence than Astraea. In essence, both response latency
based grouping (e.g., FedAT) and data distribution based grouping
(e.g., Astraea) can be considered as extreme cases of our proposed
method when λ = 0 and λ = +∞, respectively.

Sensitivity of λ. We further analyze the effect of parameter λ
on the average response latency of each group and the training
accuracy of the global model on RLG-NIID setting. As depicted
in Fig. 9, with the value of λ increases, the average JS divergence
across all groups decreases while the test accuracy of the global
model increases. However, when λ increases, some stragglers may
be involved in faster groups, leading to a higher average group
response latency and slower convergence rate of the global model.
Our heterogeneity-aware grouping methods can effectively strike
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Figure 8: Training performance of Eco-FL and other
grouping-based approaches under RLG-IID and RLG-NIID
settings.

0 250 500 1000 1500 2000
0.0

0.1

0.2

0.3

0.4

Av
g.

 JS
 D

iv
er

ge
nc

e

0 250 500 1000 1500 2000

30

35

40

45

50

Re
sp

on
se

 L
at

en
cy

 (s
)

Response Latency
Test Accuracy 0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y 
(%

)

Figure 9: JS divergence, average response latency and test ac-
curacy of global model under different λ.

a balance between model accuracy and convergence rate by tuning
parameter λ according to different requirements in practice.

6.3 Pipeline Training Performance
Performance analysis. We analyze the performance of the pro-
posed pipeline mechanism with realistic testbeds. We compare
Eco-FL’s pipeline parallelism with the data-parallel training (DP)
method and single device training on EfficientNet and MobileNet
with two-stage and three-stage pipelines. We use Nano-L collabo-
rating with a Nano-H to form a 2-stage pipeline and two Nano-H
collaborate with a TX2-Q to form a 3-stage pipeline. For a fair com-
parison, all methods share the same global mini-batch size for a
certain DNN model. We use the largest micro-batch size to hit the
peak throughput of each training method. For DP, we evenly distrib-
ute the workload to heterogeneous devices based on their training
speed tominimize the overhead of each synchronous training round.
Fig. 10 shows the training curves and Fig. 11 shows average training
time per epoch of all methods. The results demonstrate the superi-
ority of Eco-FL’s pipeline design with faster training convergence
and smaller epoch time. The low-speed links (100Mbps) between
IoT devices translate DP’s frequent gradient synchronization to
prolonged idle waiting time, while pipeline parallelism can hide
the transmission overhead by overlapping the computation and
communication processes. For DP on MobileNet-W3, the time used
for gradient synchronous communication is even longer than the
training time in an epoch, which leads to severe under-utilization
of devices and the throughput of DP is even far slower than training
on a single TX-Q. On the contrary, our Eco-FL pipeline efficiently
collaborates the computation power of all IoT devices and reaches
the target accuracy 2.6× faster than DP.

Pipeline strategy. Table 2 shows the performance comparisons
of our 1F1B-Sync with Gpipe’s BAF-Sync pipeline planning. We
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Figure 10: Training performance of EfficientNet and MobileNet with 2-stage and 3-stage pipeline.
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Figure 11: Average epoch time of EfficientNet and MobileNet with different training methods.

Table 2: Performance comparion with Gpipe.

Config. # of Micro Avg. Peak GPU Avg. GPU

Batch Memory (GB) Utilization
Stage 0 Stage 1 Stage 0 Stage 1

Gpipe 6 2.70 1.20 62.5% 67.8%
(mbs = 8) 8 - OOM - -
Ours 8 1.70 0.92 69.5% 74.2%

(mbs = 8) 16 1.70 0.92 74.6% 78.4%
Ours 8 2.70 0.96 77.9% 79.5%

(mbs = 16) 16 2.70 0.96 83.6% 84.4%
Ours 8 4.60 1.00 86.0% 85.0%

(mbs = 32) 16 4.60 1.00 90.4% 89.5%

focus on the average GPU utilization and peak GPU memory usage
on EfficientNet-B6 with a 2-stage pipeline consisting of a TX2-N
and a Nano-H. When micro-batch size (mbs) fix 8, Gpipe can ac-
commodate up to 6 micro-batch concurrently in pipeline, which
lead to low GPU utilization 62.5% and 67.8% on stage 0 and 1, re-
spectively. 1F1B-Sync planning adopts an early backward schedule
to release the memory occupied by activations for reuse, which can
inject more micro-batches concurrently into the pipeline in a sync-
round. Our method withM = 16 can achieve GPU utilization 74.6%
and 78.4% while consuming 63.0% and 76.7% averaged peak GPU
memory compared to Gpipe on stage 0 and 1 respectively. More-
over, thanks to our memory-efficient 1F1B strategy, we can further
increase the micro-batch size to improve GPU utilization of devices
while keeping enough micro-batches in the pipeline to maintain a
high throughput. When mbs = 32 andM = 16, we can achieve GPU
utilization 90.4% and 89.5% on stage 0 and 1 respectively without
OOM problem occurrence.

Heterogeneity-aware workload partitioning. We compare
our heterogeneous-aware workload partitioning algorithm with
PipeDream on EfficientNet-B1 and MobileNet-W2 with a 2-stage
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Figure 12: Performance comparison with PipeDream.

pipeline consisting of a TX2-N and a Nano-H. Fig. 12 shows the com-
parison of throughput and average GPU utilization on each stage be-
tween ours and the PipeDream method. PipeDream’s workload par-
titioning algorithm is originally designed for homogeneous devices
and the workload will be evenly divided into different stages. We
can find that the device with stronger computing capability (TX2-N)
has extremely low GPU utilization and lead to a low throughput of
pipeline. Our partitioning method considers the different computa-
tion capacities of heterogeneous devices involved in the pipeline
and will try to achieve a balance partition across all stages. GPU
utilization of both two stage stays at a high level and results in a
high throughput of the global pipeline.

Dynamic pipeline re-scheduling. We evaluate our adaptive
pipeline re-schedule module on Efficient-B4 with a 3-stage pipeline
consisting of a TX2-Q and two Nano-H. As shown in Fig. 13, we
applied an external GPU workload to device 2 at the 100-th times-
tamp.Without pipeline re-scheduling andworkloadmigration, after
applying external workload, the training speed of device 2 will sig-
nificantly slow down and become the lagger in the pipeline, which
will seriously degrade the parallelism efficiency of the global sys-
tem. With our adaptive pipeline scheduler, device 2 will migrate
part of model layers to device 1 and 3 to rebalance the workload
across each stage. By doing so, the pipeline can be promoted to a
closer throughput level comparing to that before the external load
spike. In our experiment, pipeline re-scheduling can be finished in
several seconds. In practical deployment, we can further reduce the
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Figure 13:WhenDevice 2 experiences an external load spike,
Eco-FL’s scheduler canmigrate workload across devices and
restart the pipeline, and therefore effectively boost the re-
source utilization and the system throughput.

overhead of pipeline re-boosting by scheduling workload with a
relatively coarser granularity (e.g., residual blocks).

7 CONCLUSION
This paper proposes Eco-FL, a hierarchical FL system with pipeline
parallelism to collaborate edge devices for accelerating clients’
model training. Eco-FL adopts a memory-efficient pipeline strategy
with adaptive workload scheduling to maximize the resource uti-
lization in edge collaboration, and a grouping mechanism to address
the heterogeneity issues in FL. Extensive evaluations demonstrate
Eco-FL’s effectiveness and efficiency upon existing baselines.
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