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Intelligent edge applications
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Problems of cloud-assisted approaches

® Current LLMs-based applications heavily depend on cloud services.
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Problems of on-device deployment

® On-device deployment becomes a promising paradigm for intelligent edge APPs.
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Opportunities

® Edge environment often comprise a rich set of trusted idle edge devices.

-t Collaborative Edge
== Resource Pool

@ Opportunities
v Smart homes usually have
multiple trusted devices, such
as mobile phones, laptops,

and smart-home devices
owned by the same family.

v' Utilize nearby edge devices as
resource augmentation to
render expedited LLMs
inference at the edge.

Edge Computing Platforms
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Distributed Inference Methods for LLMs

® DP, SP, TP, and PP represent the four most prominent techniques for parallel
inference in large language models (LLMs).
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Issues in Existing Collaborative Edge System

® The primary goal of edge inference systems is to reduce the latency of single-
sequence requests from users. Common DP or PP fail to meet the requirements.

® Existing collaborative edge inference systems predominantly use TP or SP as the
major parallel architecture, as exemplified by Galaxy [1] and DeTransformer (DT) [2].
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[1] Ye et al., "Galaxy: A Resource-Efficient Collaborative Edge Al System for In-situ Transformer Inference". IEEE International

Conference on Computer Communications (INFOCOM), 2024.
[2] Wei et al., "Communication-Efficient Model Parallelism for Distributed In-situ Transformer Inference". Design, Automation and

Test in Europe Conference (DATE), 2024.
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Issues in Existing Collaborative Edge System

® TP/SP-based architectures require multiple collective communications within
each decoder layer, leading to significant communication overhead.

® In each decoder layer, TP requires two AllReduce operations to synchronize
tensors, while SP requires two AllGather operations to collect keys and values.

An instance of tensor model parallelism across two edge devices
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Issues in Existing Collaborative Edge System

® TP/SP-based architectures require multiple collective communications within
each decoder layer, leading to significant communication overhead.

TABLE 11
COMM.-TO-COMP. RATIO OF VARIOUS PARALLELISM METHODS.

Model Network Communication-to-Computation Ratio
Name  Bandwidth SP TP | DT [7] Galaxy [6] | Jupiter

[00Mbps _ 8.16 6.96 519 0,08
Llama2-7B 1Gops 092 0.88 0.69 0.01
Llama2-138  100Mbps  5.71 6.06 4.63 0.05

IGbps  0.73 0.81 0.56 0.01

Existing TP/SP-based systems exhibit a high communication-to-
computation latency ratios making communication a critical bottleneck.
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Architecture Choices of Jupiter

® Jupiter employing a pipeline architecture to orchestrate multiple edge devices.

g

@ Observation: Pipeline architecture has a lower communication-to-
computation ratio during collaborative LLM inference, making it more
suitable for low-bandwidth edge environments.
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Architecture Choices of Jupiter

® Jupiter employing a pipeline architecture to orchestrate multiple edge devices.

— e

Challenges: Pipeline architecture struggles to accelerate inference
for single-sequence requests due to the lack of batch dimension.
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Issues in Existing Collaborative Edge System

® EXxisting research works are mostly limited to discriminative tasks and focus
solely on the prefill phase.

® The main strength of modern LLMs lies in generative decoding tasks, but most
existing systems are not designed or optimized for the decode phase.
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Challenges

® Efficiently leveraging the computational resources of multiple edge
devices under a pipeline architecture is a non-trivial problem.
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with pipelined architecture.

me summarize the main =
points of this article?

This article introduces an @
efficient edge Al system ...
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Challenges

(:).Chaﬂenges

1. How to accelerate the prefill

phase with pipelined architecture
for single sequence request.
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Collaborative Inference for Prefilling Phase

® Solution to Challenge #1: Utilizing Intra-sequence pipeline parallelism.

Partition the LLM into multiple stages, each handled by a separate edge device.

Partition the input sequence into multiple sub-sequences to increase parallelism.

When computing the sub-sequence s;, the cached key and value of s, ..., s;_1

are utilized to ensure accurate self-attention results.
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Fig. 5. An illustration of pipelined inference with three edge devices.
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Fig. 6. An illustration of opportunities of intra-sequence parallel inference.
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Optimal Model and Sequence Partition

® Selecting Optimal LLMs Partition

® Use dynamic programming algorithm to partition the target LLM into multiple
stages with equal execution time.
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Optimal Model and Sequence Partition

® Selecting Optimal Sequence Partition

', Sequence Partition is not trivial for the following reasons:

1. Increasing the number of sub-sequences can efficiently boost parallelism.
However, this results in shorter sub-sequences, which may underutilize
the mobile accelerators.

2. Partitioning the sequence into sub-sequences of equal length for pipelining
IS not optimal. Later sub-sequences carry a heavier computational load
than earlier ones.

3. The input sequence lengths vary across different requests,
necessitating the determination of the optimal partitioning strategy for any
possible length prior to online service deployment
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Optimal Model and Sequence Partition

® Selecting Optimal Sequence Partition

® \We carefully profile and model the inference latency and design a dynamic

programming algorithm to determine the optimal partitioning for requests with
varying sequence lengths.
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Fig. 5. An illustration of pipelined inference with three edge devices.
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Collaborative Inference for Decoding Phase

® Solution to Challenge #2: Integrate speculative decoding with pipeline architecture

e

g

@ Observation: Compared to speculativev decoding with small-large
model collaboration, self-speculative decoding is better suited for
distributed pipelined deployment.
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Fig. 8. A workflow of our collaborative inference with speculative decoding.
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Collaborative Inference for Decoding Phase

® Solution to Challenge #2: Outline-Based Pipeline Parallel Decoding

@ Observation:

® L| Mstendto
generate structured,
point-by-point
responses.

® The generation of
each individual point
is often independent
and lacks contextual
coherence.
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Fig. 9. An illustration of our outline-based pipeline parallel decoding.
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Putting It All Together

® Jupiter system workflow.

@ Jupiter uses avpipelined architecture to significantly reduce communication
overhead. It optimizes not only the prefill phase, but also the decoding phase.
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Evaluation

® Testbeds

» Using these 3 heterogeneous devices, we simulated 2 different edge
clusters, including both homogeneous and heterogeneous clusters.

TABLE 111
SPECIFICATIONS OF EDGE DEVICES IN EXPERIMENTS. Env. A (Homo.): 4 x NX
Edge Device GPU Processor Memory Power
Jetson Xavier NX [16] 384-core NVIDIA Volta 8GB 20W
Jetson TX2 [30] 256-core NVIDIA Pascal ~ 8GB  20W Env. B (Hetero.): 1 x NX
Jetson Nano [31] 128-core NVIDIA Maxwell 8GB 10W +2xTX2 + 1 xNano

® Models and datasets

» 2 LLMs from the Llamaz2 series, specifically Llama2-7B and Llama2-13B
(both with INT4 quantization)

> Evaluate with 3 recent assistant-style datasets: LIMA, Vicuna-80, and

WizardLM.
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Evaluation

® Baselines

» Megatron-LM (M-LM): A state-of-the-art tensor model parallelism method.

> Sequence Parallelism (SP): A state-of-the-art sequence model parallelism
method

» DeTransformer (DT): TP-based collaborative edge system that optimizes
communications by reducing the frequency of tensor synchronization.

» Galaxy: TP-based collaborative edge system that optimizes communications by
fine-grained overlapping of comm. and comp.

> EdgeShard (ES): PP-based collaborative edge inference system that employs
pipelined architecture to orchestrate edge devices.
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Evaluation

]
S 4
- -

Jupiter achieves up to 26.1x end-to-end generation latency reduction
compared to baselined system!

4
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Evaluation

-.())- The high comm.-to-comp. ratio of baselines hinders resource-efficient scaling in
= bandwidth-limited edge environments. Jupiter outperforms baseline methods in
scalability across varying bandwidths.
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Fig. 12. End-to-end inference latency with a varing number of Jetson Xavier

NX under 100Mbps and 1Gbps network bandwidths. X indicates OOM. .



Evaluation

@ Jupiter achieves up to 3.9x speedup over naive sequential generation
=" while maintaining comparable generation quality.

TABLE V
SPEEDUP OVER NAIVE SEQUENTIAL GENERATION. SD: SPECULATIVE
DECODING. OP: OUTLINE-BASED PARALLEL DECODING.

Speedup Over Naive

Model
0ae Naive Jupiter w/o OP  Jupiter w/o SD  Jupiter
Llama2-7B  1.0X 1.8% 2.3 3.6
Llama2-13B  1.0X 2.0x 2.4 % 3.9%
TABLE VI
OVERALL ANSWERS QUALITY OF NAIVE AND JUPITER’S METHOD.
Vicuna-80 Wizard LM LiMA
Method
Llama2-7B Llama2-13B Llama2-7B Llama2-13B Llama2-7B Llama2-13B
Naive 7.05 7.19 6.26 6.85 6.72 6.77
Jupiter 6.59 6.85 6.21 6.70 6.20 6.25
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Jupiter Demo

d Run collaborative inference of the Llama2-7B model using four NVIDIA Jetson
edge devices.
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