
Jupiter: Fast and Resource-Efficient Collaborative 

Inference of Generative LLMs on Edge Devices 

Shengyuan Ye1, Bei Ouyang1, Liekang Zeng2, Tianyi Qian1, 

Xiaowen Chu3, Jian Tang4, Xu Chen1

1Shengyuan Ye @ School of CSE, Sun Yat-sen University

1 Sun Yat-sen University
2 The Chinese University of Hong Kong

3 The Hong Kong University of Science and Technology (GZ)
4 Midea Group



Shengyuan Ye @ School of CSE, Sun Yat-sen University 2

Intelligent edge applications

Personal AI Assistants Smart Robotics/UAV AR & VR APPs

⚫ Large language models driven increasing intelligent applications.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 3

Problems of cloud-assisted approaches

⚫ Current LLMs-based applications heavily depend on cloud services.

Forward 
user 

requests

Return 
inference 

results

Intelligent 
Edge Devices

Cloud 
Servers

Raising three game-stopping problems:

Data privacy concerns.

Unreliable WAN connections.

Network and datacenter pressure.

Powerful and scalable computing 
resources.

Benefits of cloud deployment:



Shengyuan Ye @ School of CSE, Sun Yat-sen University 4

Problems of on-device deployment

Protect date privacy.

Without WAN transmission.

Limited and non-scalable on-
board computing resources

Transformer-based 
intelligent applications

Deploy

Intelligent
Edge Devices

⚫ On-device deployment becomes a promising paradigm for intelligent edge APPs.

121x performance gap. Out of memory error.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 5

Opportunities

⚫ Edge environment often comprise a rich set of trusted idle edge devices.

✓ Smart homes usually have 
multiple trusted devices, such 
as mobile phones, laptops, 
and smart-home devices 
owned by the same family.

✓ Utilize nearby edge devices as 
resource augmentation to 
render expedited LLMs
inference at the edge.

Opportunities

Smart Phones/Watches

Personal Laptops/Server

Edge Computing Platforms



Shengyuan Ye @ School of CSE, Sun Yat-sen University 6

Distributed Inference Methods for LLMs

⚫ DP, SP, TP, and PP represent the four most prominent techniques for parallel 

inference in large language models (LLMs).



Shengyuan Ye @ School of CSE, Sun Yat-sen University 7

Issues in Existing Collaborative Edge System

⚫ The primary goal of edge inference systems is to reduce the latency of single-

sequence requests from users. Common DP or PP fail to meet the requirements.

⚫ Existing collaborative edge inference systems predominantly use TP or SP as the 

major parallel architecture, as exemplified by Galaxy [1] and DeTransformer (DT) [2].

[1] Ye et al., "Galaxy: A Resource-Efficient Collaborative Edge AI System for In-situ Transformer Inference". IEEE International 
Conference on Computer Communications (INFOCOM), 2024.

[2] Wei et al., "Communication-Efficient Model Parallelism for Distributed In-situ Transformer Inference". Design, Automation and 
Test in Europe Conference (DATE), 2024.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 8

Issues in Existing Collaborative Edge System

⚫ TP/SP-based architectures require multiple collective communications within 

each decoder layer, leading to significant communication overhead.

⚫ In each decoder layer, TP requires two AllReduce operations to synchronize 

tensors, while SP requires two AllGather operations to collect keys and values.

An instance of tensor model parallelism across two edge devices 



Shengyuan Ye @ School of CSE, Sun Yat-sen University 9

Issues in Existing Collaborative Edge System

⚫ TP/SP-based architectures require multiple collective communications within 

each decoder layer, leading to significant communication overhead.

Existing TP/SP-based systems exhibit a high communication-to-

computation latency ratios making communication a critical bottleneck.

Up to 92.6x



Shengyuan Ye @ School of CSE, Sun Yat-sen University 10

Architecture Choices of Jupiter

Observation: Pipeline architecture has a lower communication-to-

computation ratio during collaborative LLM inference, making it more 

suitable for low-bandwidth edge environments.

⚫ Jupiter employing a pipeline architecture to orchestrate multiple edge devices.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 11

Architecture Choices of Jupiter

Challenges: Pipeline architecture struggles to accelerate inference 

for single-sequence requests due to the lack of batch dimension.

⚫ Jupiter employing a pipeline architecture to orchestrate multiple edge devices.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 12

Issues in Existing Collaborative Edge System

⚫ Existing research works are mostly limited to discriminative tasks and focus 

solely on the prefill phase. 

⚫ The main strength of modern LLMs lies in generative decoding tasks, but most 

existing systems are not designed or optimized for the decode phase.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 13

Challenges

Challenges

1. How to accelerate the prefill 
phase with pipelined architecture
for single sequence request.

2. How to accelerate the 
autoregressive decoding phase 
with pipelined architecture.

⚫ Efficiently leveraging the computational resources of multiple edge 

devices under a pipeline architecture is a non-trivial problem.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 14

Challenges

Challenges

1. How to accelerate the prefill 
phase with pipelined architecture
for single sequence request.

2. How to accelerate the 
autoregressive decoding phase 
with pipelined architecture.

⚫ Efficiently leveraging the computational resources of multiple edge 

devices under a pipeline architecture is a non-trivial problem.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 15

Collaborative Inference for Prefilling Phase

⚫ Solution to Challenge #1: Utilizing Intra-sequence pipeline parallelism.

1. Partition the LLM into multiple stages, each handled by a separate edge device.

2. Partition the input sequence into multiple sub-sequences to increase parallelism.

3. When computing the sub-sequence 𝑠𝑖, the cached key and value of 𝑠1, … , 𝑠𝑖−1
are utilized to ensure accurate self-attention results.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 16

Optimal Model and Sequence Partition

⚫ Selecting Optimal LLMs Partition

Unplanned LLM layers

… …

Planned LLM layers

⚫ Use dynamic programming algorithm to partition the target LLM into multiple 

stages with equal execution time.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 17

Optimal Model and Sequence Partition

⚫ Selecting Optimal Sequence Partition

Sequence Partition is not trivial for the following reasons:

1. Increasing the number of sub-sequences can efficiently boost parallelism. 

However, this results in shorter sub-sequences, which may underutilize 

the mobile accelerators.

2. Partitioning the sequence into sub-sequences of equal length for pipelining 

is not optimal. Later sub-sequences carry a heavier computational load

than earlier ones.

3. The input sequence lengths vary across different requests, 

necessitating the determination of the optimal partitioning strategy for any 

possible length prior to online service deployment



Shengyuan Ye @ School of CSE, Sun Yat-sen University 18

Optimal Model and Sequence Partition

⚫ Selecting Optimal Sequence Partition

⚫ We carefully profile and model the inference latency and design a dynamic 

programming algorithm to determine the optimal partitioning for requests with 

varying sequence lengths.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 19

Collaborative Inference for Decoding Phase

⚫ Solution to Challenge #2: Integrate speculative decoding with pipeline architecture

Observation: Compared to speculative decoding with small-large 

model collaboration, self-speculative decoding is better suited for 

distributed pipelined deployment.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 20

Collaborative Inference for Decoding Phase

⚫ Solution to Challenge #2: Outline-Based Pipeline Parallel Decoding

Observation: 

⚫ LLMs tend to 

generate structured, 

point-by-point 

responses. 

⚫ The generation of 

each individual point 

is often independent

and lacks contextual 

coherence.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 21

Putting It All Together

⚫ Jupiter system workflow.

Jupiter uses a pipelined architecture to significantly reduce communication 

overhead. It optimizes not only the prefill phase, but also the decoding phase.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 22

Evaluation

⚫ Testbeds

➢ Using these 3 heterogeneous devices, we simulated 2 different edge 
clusters, including both homogeneous and heterogeneous clusters.

⚫ Models and datasets

➢ 2 LLMs from the Llama2 series, specifically Llama2-7B and Llama2-13B 
(both with INT4 quantization)

➢ Evaluate with 3 recent assistant-style datasets: LiMA, Vicuna-80, and 
WizardLM.

Env. A (Homo.): 4 x NX

Env. B (Hetero.): 1 x NX 

+ 2 x TX2 + 1 x Nano



Shengyuan Ye @ School of CSE, Sun Yat-sen University 23

Evaluation

⚫ Baselines

➢ Megatron-LM (M-LM): A state-of-the-art tensor model parallelism method.

➢ Sequence Parallelism (SP): A state-of-the-art sequence model parallelism 
method

➢ DeTransformer (DT): TP-based collaborative edge system that optimizes 
communications by reducing the frequency of tensor synchronization.

➢ Galaxy: TP-based collaborative edge system that optimizes communications by 
fine-grained overlapping of comm. and comp.

➢ EdgeShard (ES): PP-based collaborative edge inference system that employs 
pipelined architecture to orchestrate edge devices.



24

Evaluation

Jupiter achieves up to 26.1x end-to-end generation latency reduction 
compared to baselined system!

Average input 

sequence length: 

260 tokens

Maximum 

generation length: 

64 tokens



25

Evaluation

The high comm.-to-comp. ratio of baselines hinders resource-efficient scaling in 

bandwidth-limited edge environments. Jupiter outperforms baseline methods in 

scalability across varying bandwidths.



26

Evaluation

Jupiter achieves up to 3.9x speedup over naive sequential generation 
while maintaining comparable generation quality.



Shengyuan Ye @ School of CSE, Sun Yat-sen University 27

Jupiter Demo

Run collaborative inference of the Llama2-7B model using four NVIDIA Jetson 

edge devices.



Shengyuan Ye1, Bei Ouyang1, Liekang Zeng2, Tianyi Qian1, 

Xiaowen Chu3, Jian Tang4, Xu Chen1

28Shengyuan Ye @ School of CSE, Sun Yat-sen University

1 Sun Yat-sen University
2 The Chinese University of Hong Kong

3 The Hong Kong University of Science and Technology (GZ)
4 Midea Group

Thanks for listening


	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28

