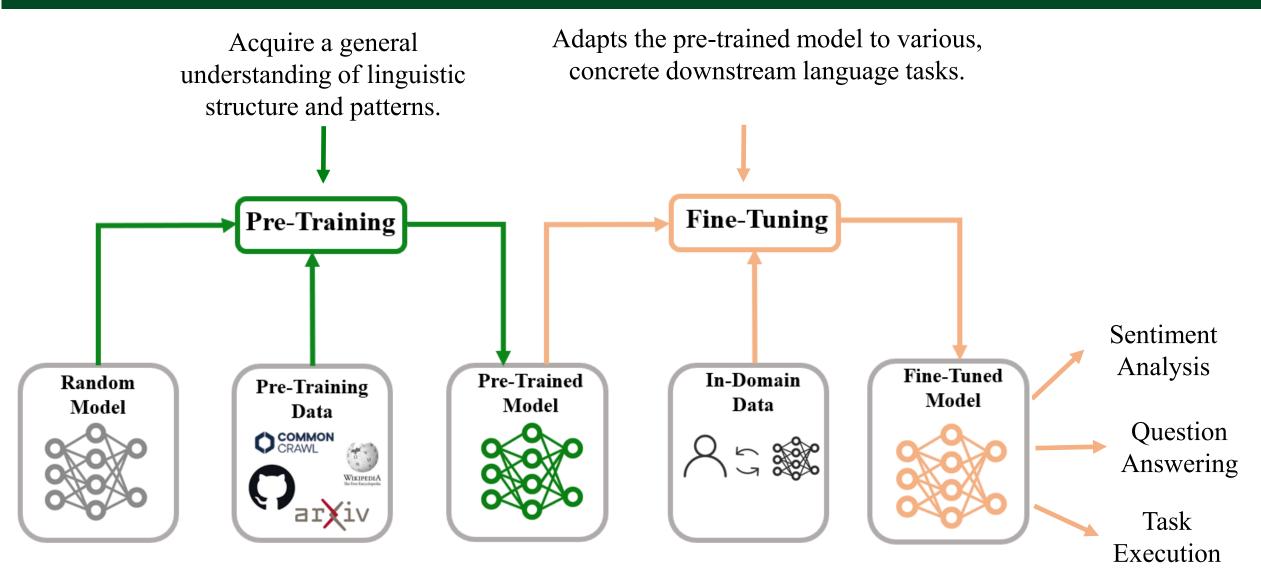
**Bei Ouyang<sup>\*1</sup>**, Shengyuan Ye<sup>\*1</sup>, Liekang Zeng<sup>2</sup>, Tianyi Qian<sup>1</sup>, Jingyi Li<sup>1</sup>, Xu Chen<sup>†1</sup>

<sup>1</sup>Sun Yat-sen University, <sup>2</sup>HKUST(GZ)



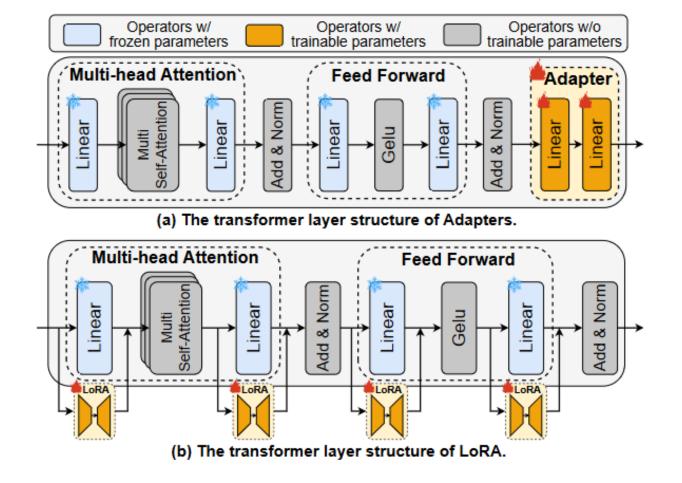


## **Transformer-Based LLMs and Fine-Tuning**



## **Parameter-efficient finetuning (PEFT) techniques**

Adapters: inserts compact bottleneck modules at the end of each transformer layer.



LoRA: injects trainable low-rank matrices into a frozen pre-trained model.

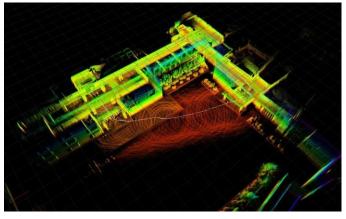
## Intelligent edge applications

Transformer-based models driven increasing intelligent applications.



Intelligent personal assistants





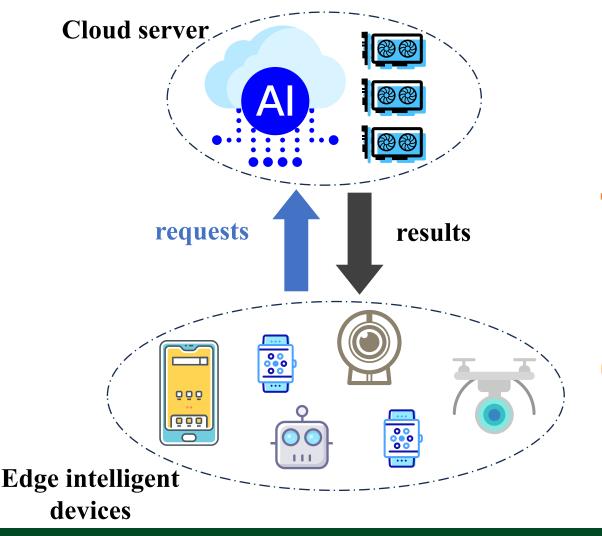
Intelligent robots/aircraft



AR&VR applications

## **Problems of cloud-assisted approaches**

• Current Transformer-based applications heavily depend on cloud services.



The advantage of cloud service



Powerful and scalable computing resources

Three issues with cloud service

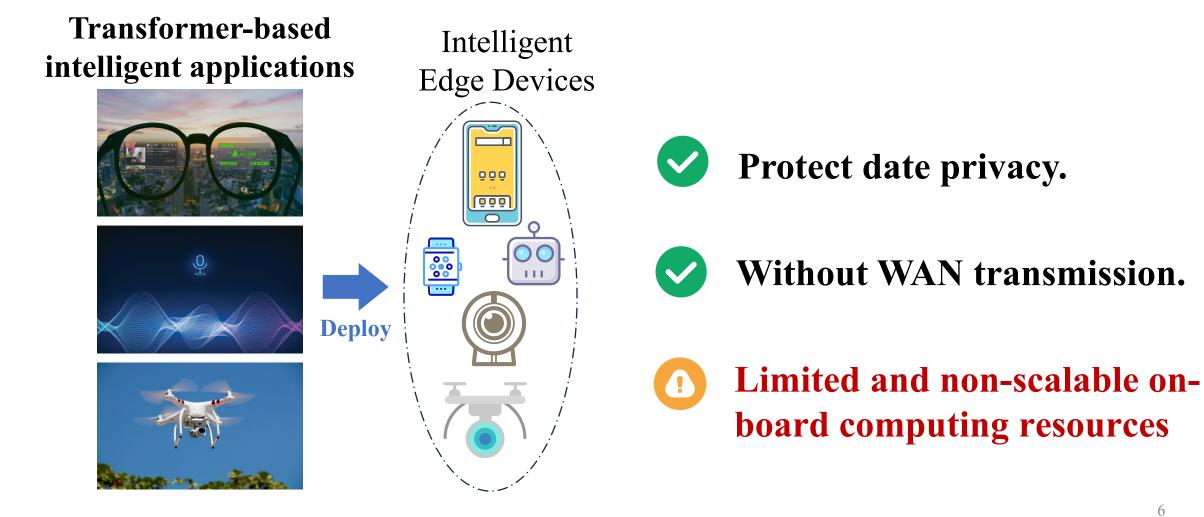


Unreliable WAN connections.

Network and datacenter pressure.

## LLMs Fine-Tuning with Resource-Constrained Edge Devices

• On-device deployment becomes a promising paradigm for intelligent edge APPs.



- PEFT techniques are **not resource-efficient** enough for edge environments.
- ➢Adapters and LoRA exhibit a limited reduction in computation (around 30%).

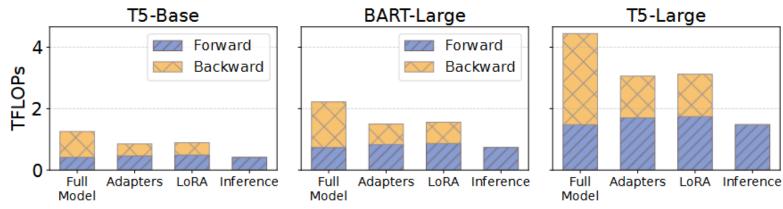
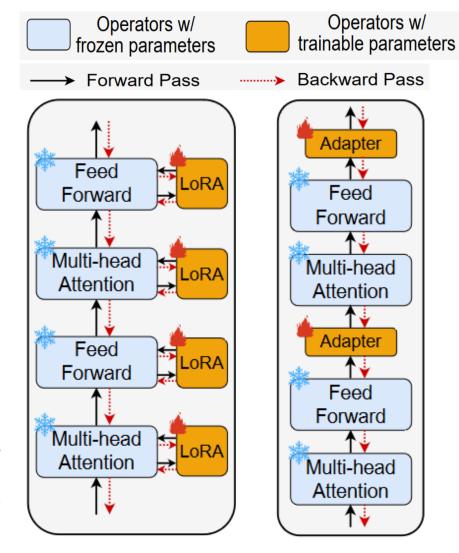


Figure 3: The comparison of floating point of operations (FLOPs). Mini-batch size: 16; sequence length: 128.



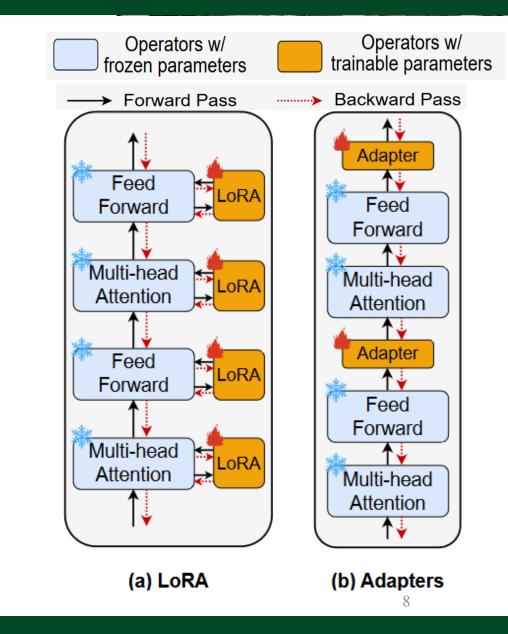
(b) Adapters

(a) LoRA

- PEFT techniques are **not resource-efficient** enough for edge environments.
- Adapters and LoRA exhibit a with a maximum reduction of only 36% in memory.

| Techniques | Trainable    | Memory Footprint (GB) |             |           |       |  |  |  |  |  |
|------------|--------------|-----------------------|-------------|-----------|-------|--|--|--|--|--|
| rechniques | Parameters   | Weights               | Activations | Gradients | Total |  |  |  |  |  |
| Full       | 737M (100%)  | 2.75                  | 5.33        | 2.75      | 10.83 |  |  |  |  |  |
| Adapters   | 12M (1.70 %) | 2.80                  | 4.04        | 0.05      | 6.89  |  |  |  |  |  |
| LoRA       | 9M (1.26%)   | 2.78                  | 4.31        | 0.04      | 7.13  |  |  |  |  |  |
| Inference  | /            | 2.75                  | /           | /         | 2.75  |  |  |  |  |  |

Table 1: The breakdown of memory footprint. "Activations" contain the intermediate results and optimizer states. Model: T5-Large; mini-batch size: 16; sequence length: 128.



- The fundamental contradiction between intensive LLM fine-tuning workload and constrained on-board resources.
- > The computational capabilities of edge devices are constrained.

## TABLE I INFERENCE LATENCY AND MEM. FOOTPRINT OF TRANSFORMER MODELS

| Model               | DistilBert | Bert-L | GPT2-L | OPT-L | OPT-XL |
|---------------------|------------|--------|--------|-------|--------|
| Nano-M              | 0.37s      | 2.43s  | OOM    | OOM   | OOM    |
| Nvidia A100         | 5ms        | 20ms   | 29ms   | 27ms  | 38ms   |
| Memory<br>Footprint | 130MB      | 680MB  | 1.6GB  | 2.6GB | 5.4GB  |
|                     |            |        |        |       |        |

| Device      | AI          |  |  |  |  |  |
|-------------|-------------|--|--|--|--|--|
|             | Performance |  |  |  |  |  |
| Jetson Nano | 472 GFLOPS  |  |  |  |  |  |
| NVIDIA A100 | 312 TFLOPS  |  |  |  |  |  |

#### 121x performance gap.

- The fundamental contradiction between intensive LLM fine-tuning workload and constrained on-board resources
- $\succ$  On-device fine-tuning is hindered by the memory wall.

| Techniques | Trainable    | Memory Footprint (GB) |             |           |       |  |  |  |  |  |
|------------|--------------|-----------------------|-------------|-----------|-------|--|--|--|--|--|
| Techniques | Parameters   | Weights               | Activations | Gradients | Total |  |  |  |  |  |
| Full       | 737M (100%)  | 2.75                  | 5.33        | 2.75      | 10.83 |  |  |  |  |  |
| Adapters   | 12M (1.70 %) | 2.80                  | 4.04        | 0.05      | 6.89  |  |  |  |  |  |
| LoRA       | 9M (1.26%)   | 2.78                  | 4.31        | 0.04      | 7.13  |  |  |  |  |  |
| Inference  | /            | 2.75                  | /           | /         | 2.75  |  |  |  |  |  |

| Device      | Memory       |
|-------------|--------------|
| Jetson Nano | 4 GB         |
| NVIDIA A100 | 40 GB/ 80 GB |

Table 1: The breakdown of memory footprint. "Activations" contain the intermediate results and optimizer states. Model: T5-Large; mini-batch size: 16; sequence length: 128.

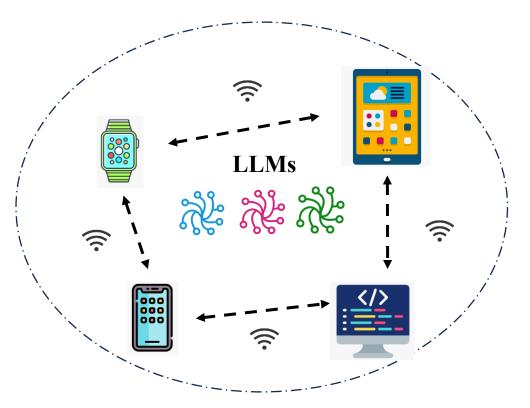
Incurs a peak memory footprint that is often unaffordable for edge devices.

## **Opportunities**

· @.

Edge environment often comprise a rich set of trusted idle edge devices.

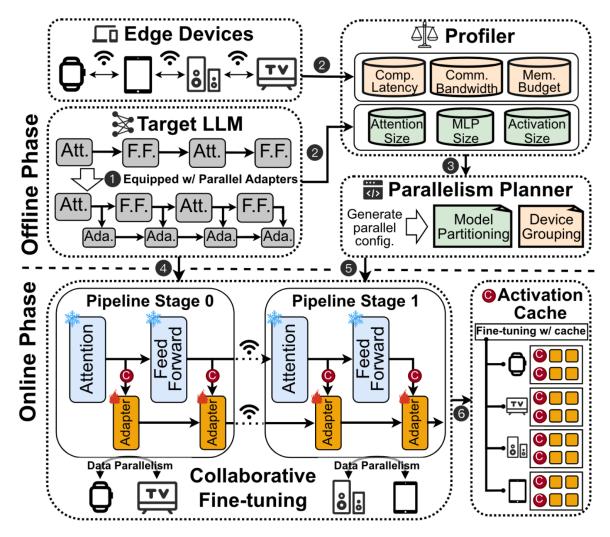
- Prevalent edge environments like smart homes usually comprise a group of trusted idle devices beyond a single terminal (e.g., mobile phones, laptops, and smart-home devices owned by the same user or family).
- These accompanying devices are typically in physical proximity and can be associated as a resource augmentation for in-situ personal LLMs fine-tuning.



#### Algorithm-system codesign

(Algorithm): In light of the side-tuning techniques, we employ not only parameter but also time and memory-efficient personal LLMs finetuning techniques with Parallel Adapters, which provides a dedicated gradient "highway" for the trainable parameters.

(System): We leverage edge devices in physical proximity and associate them as an edge resource pool for in-situ personal LLMs fine-tuning.



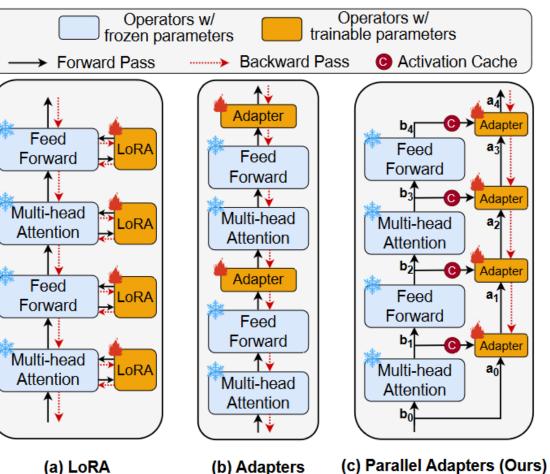
#### Algorithm-system codesign

(Algorithm): In light of the side-tuning techniques, we employ not only parameter but also time and memory-efficient personal LLMs finetuning techniques with Parallel Adapters, which provides a dedicated gradient "highway" for the trainable parameters.

(System): We leverage edge devices in physical proximity and associate them as an edge resource pool for in-situ personal LLMs fine-tuning.

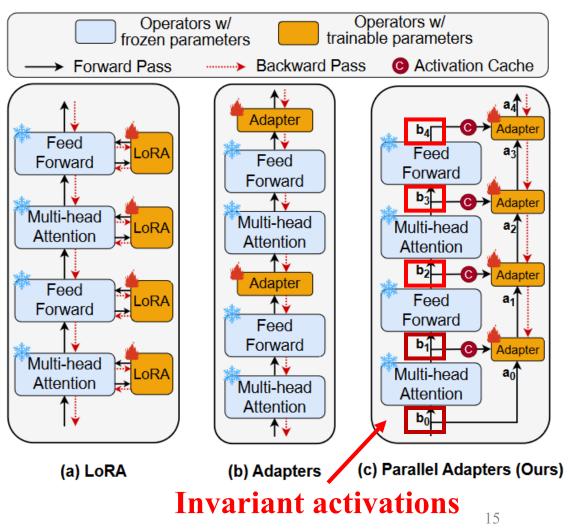


- Fine-Tuning LLMs with Parallel Adapters
- The parameters of backbone transformer are **frozen**.
- Parallel adapters are a lightweight, separate network that takes the intermediate activations from the backbone LLM as input and generates predictions. (Skip the backward propagation from the LLM backbone!)



#### PAC Activation Cache for Parallel Adapters

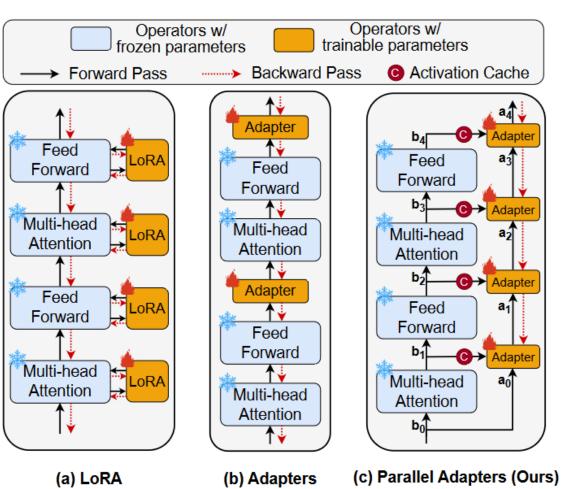
- During the first epoch, when processing a new input sequence, cache all the input activations required by the Parallel Adapters that are obtained from the LLM backbone.
- In subsequent fine-tuning epochs using the same input sequence, we can reuse cached activations. (Skip the forward propagation from the LLM backbone!)



#### > PAC Activation Cache for Parallel Adapters

Skip both the forward and backward propagation through the LLM backbone entirely!

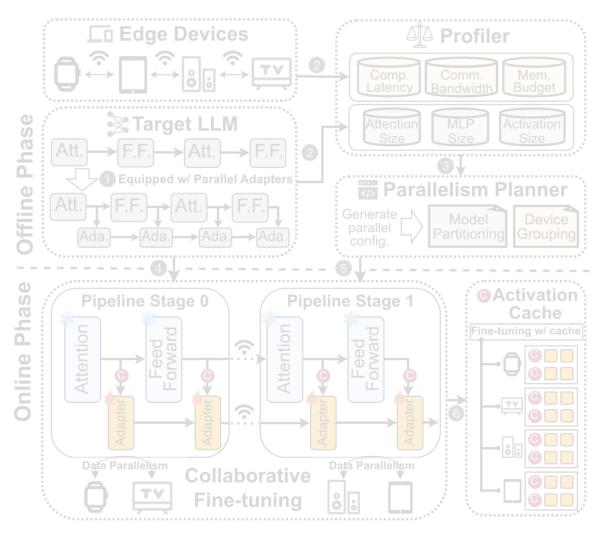
- Significantly accelerating the fine-tuning process.
- Reducing the memory footprint by allowing the release of the memory space occupied by the LLM parameters.



### > Algorithm-system codesign

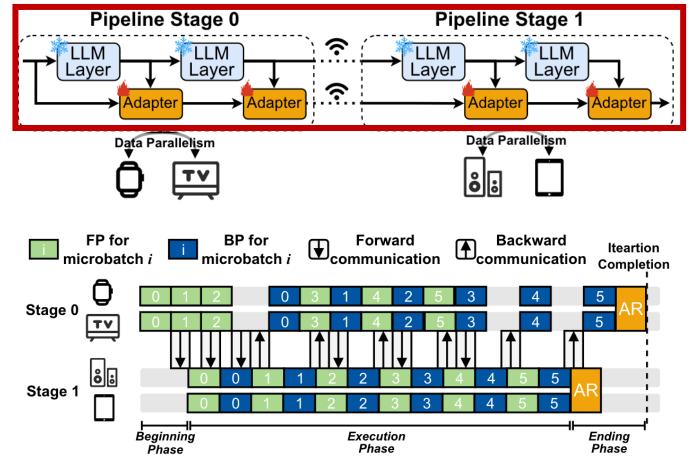
(Algorithm): In light of the side-tuning techniques, we employ not only parameter but also time and memory-efficient personal LLMs finetuning techniques with Parallel Adapters, which provides a dedicated gradient "highway" for the trainable parameters.

(System): We leverage edge devices in physical proximity and associate them as an edge resource pool for in-situ personal LLMs fine-tuning.



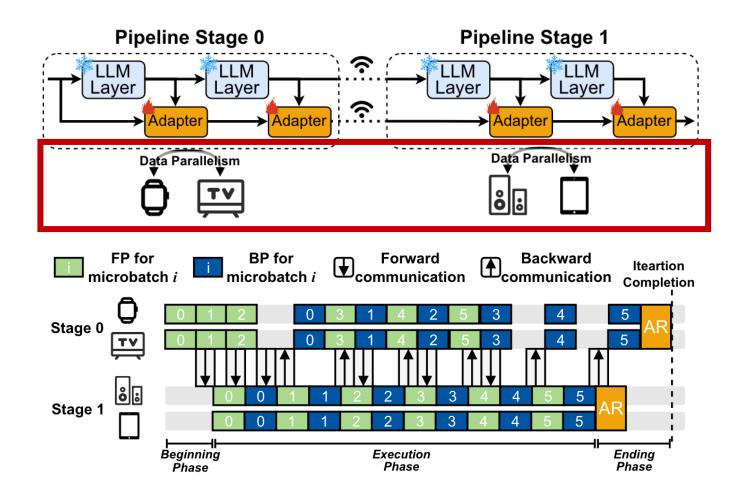
#### > Data & Pipeline Hybrid Parallelism for LLMs Fine-Tuning

**Step1** : PAC first divides an LLM into multiple stages where each contains a stage model composed of a set of consecutive transformer layer.



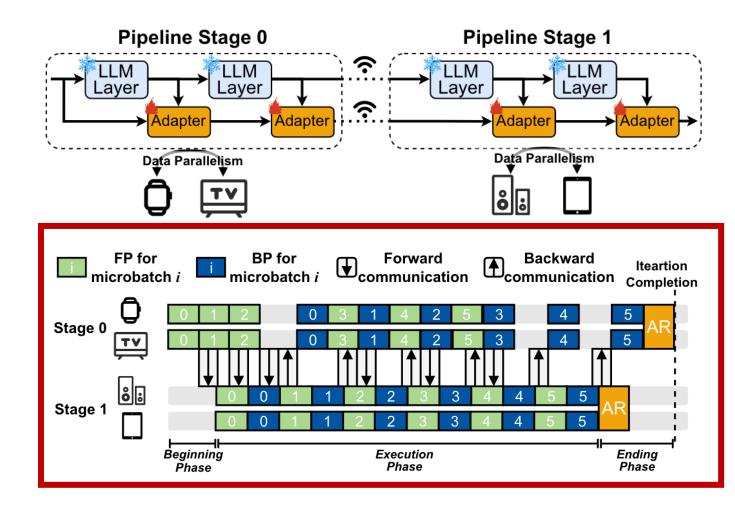
#### > Data & Pipeline Hybrid Parallelism for LLMs Fine-Tuning

Step2 : Edge devices are allocated into several device groups, each comprising one or more devices.PAC maps each stage to a group, with the stage model replicated across all devices within that group.



#### > Data & Pipeline Hybrid Parallelism for LLMs Fine-Tuning

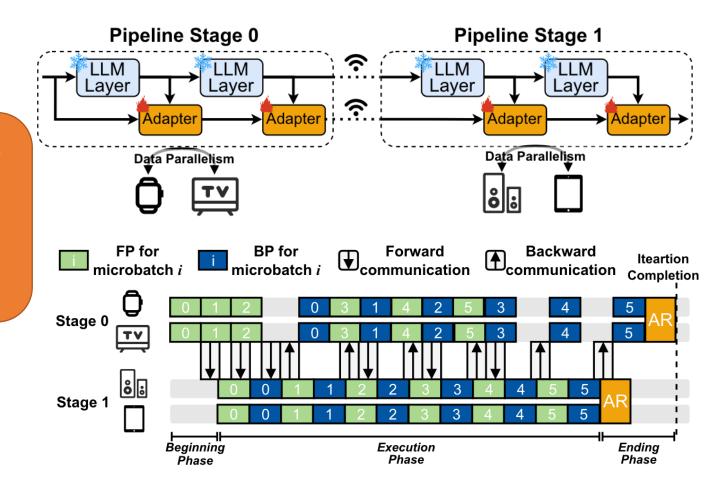
**Step3** : A mini-batch is divided into several micro-batches for concurrent processing to enhance parallelism. If a device cluster hosts multiple devices, micro-batches are further subdivided.



#### > Data & Pipeline Hybrid Parallelism for LLMs Fine-Tuning

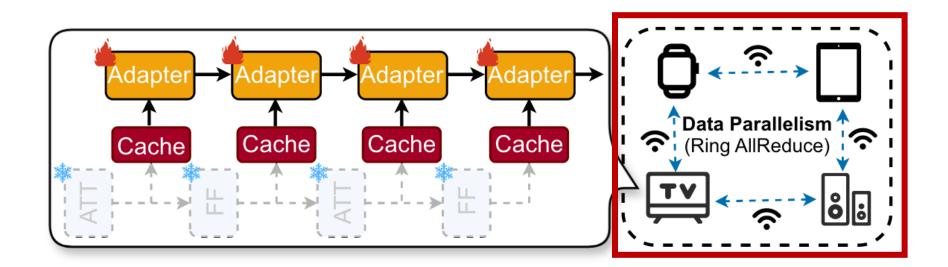
We design a dynamic programming algorithm to search for the optimal partitioning method and device grouping method for LLMs.

(H



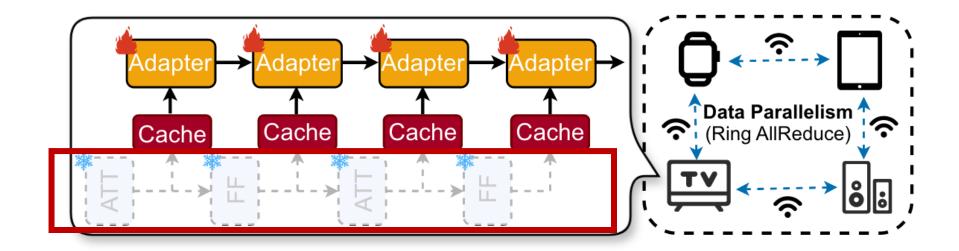
#### Cache-Enabled Collaborative Edge Fine-Tuning of Parallel Adapters

**Step 1:** Perform collective communication to redistribute the Parallel Adapters' parameters and locally cached activations across all devices.



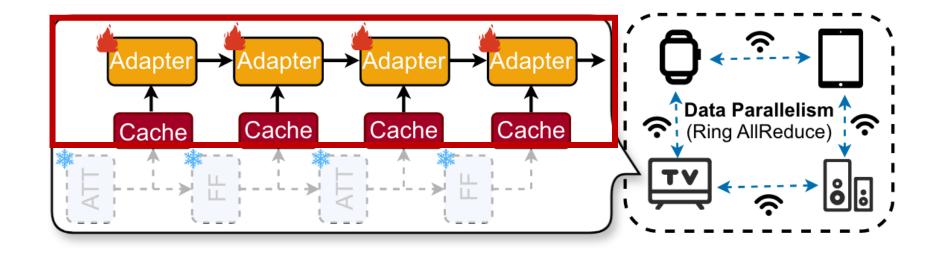
Cache-Enabled Collaborative Edge Fine-Tuning of Parallel Adapters

**Step 2:** Release the memory usage of the backbone model by simply loading parallel adapters for fine-tuning.



Cache-Enabled Collaborative Edge Fine-Tuning of Parallel Adapters

**Step 3:** The devices then utilize cached activations to fine-tune the parallel adapters in a data-parallel manner.



#### > Implementation and Setups

• Models:

| Model           | Structure | Layers | Heads | Hidden<br>Size | Param.<br>Count |
|-----------------|-----------|--------|-------|----------------|-----------------|
| T5-Base [20]    | en-de     | 12     | 12    | 768            | 0.25B           |
| BART-Large [13] | en-de     | 12     | 16    | 1024           | 0.41B           |
| T5-Large [20]   | en-de     | 24     | 16    | 1024           | 0.74B           |

- Edge Environment Setup:
  - 8 NVIDIA Jetson Nanos
  - network bandwidth: 1000Mbps

#### Implementation and Setups

- Baseline Methods:
  - Standalone + Full model fine-tuning/Adapters/LoRA
  - Eco-FL (ICPP 2022) + Full model fine-tuning/Adapters/LoRA
  - EDDL (SEC 2021) + Full model fine-tuning/Adapters/LoRA

#### End-to-end Performance

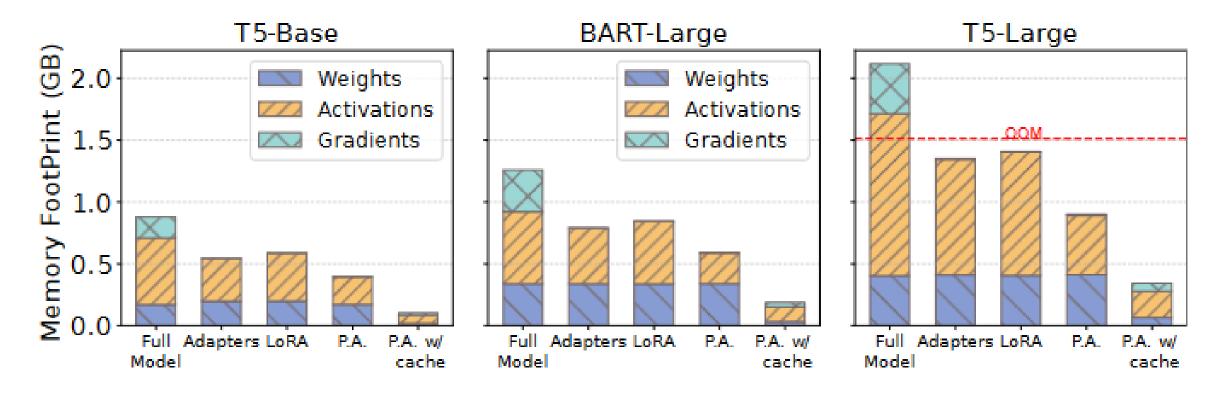
• PAC accelerates fine-tuning up to  $8.64 \times$  faster than existing state-of-the-art methods.

| Fine-tuning Baseline |            |      | Т5-В  | ase   |       |      | BART-Large |       |       |      | T5-Large |       |       |  |
|----------------------|------------|------|-------|-------|-------|------|------------|-------|-------|------|----------|-------|-------|--|
| Techniques           | Methods    | MRPC | STS-B | SST-2 | QNLI  | MRPC | STS-B      | SST-2 | QNLI  | MRPC | STS-B    | SST-2 | QNLI  |  |
|                      | Standalone | OOM  | OOM   | OOM   | OOM   | OOM  | OOM        | OOM   | OOM   | OOM  | OOM      | OOM   | OOM   |  |
| Full Model           | Eco-FL     | 0.45 | 0.71  | 2.74  | 4.32  | 2.41 | 3.78       | 14.56 | 22.98 | OOM  | OOM      | OOM   | OOM   |  |
|                      | EDDL       | OOM  | OOM   | OOM   | OOM   | OOM  | OOM        | OOM   | OOM   | OOM  | OOM      | OOM   | OOM   |  |
|                      | Standalone | 1.21 | 1.9   | 7.29  | 11.51 | OOM  | OOM        | OOM   | OOM   | OOM  | OOM      | OOM   | OOM   |  |
| Adapters             | Eco-FL     | 0.39 | 0.61  | 2.35  | 3.71  | 0.54 | 0.85       | 3.27  | 5.16  | 2.75 | 4.31     | 16.59 | 26.19 |  |
|                      | EDDL       | 0.34 | 0.53  | 2.06  | 3.25  | OOM  | OOM        | OOM   | OOM   | OOM  | OOM      | OOM   | OOM   |  |
|                      | Standalone | 1.21 | 1.89  | 7.28  | 11.49 | OOM  | OOM        | OOM   | OOM   | OOM  | OOM      | OOM   | OOM   |  |
| LoRA                 | Eco-FL     | 0.41 | 0.64  | 2.45  | 3.87  | 0.55 | 0.87       | 3.33  | 5.26  | 2.73 | 4.28     | 16.48 | 26.02 |  |
|                      | EDDL       | 0.31 | 0.48  | 1.86  | 2.94  | OOM  | OOM        | OOM   | OOM   | OOM  | OOM      | OOM   | OOM   |  |
| Parallel Adapters    | PAC (Ours) | 0.14 | 0.22  | 1.34  | 2.12  | 0.29 | 0.45       | 2.69  | 4.25  | 0.69 | 1.09     | 8.88  | 14.02 |  |

Table 2: Training durations (in hours) for different methods: 3 epochs for MRPC and STS-B, and 1 epoch for SST-2 and QNLI.

#### **End-to-end Performance**

• PAC decrease the peak memory up to **88.16%** compared to baselines.



#### **End-to-end Performance**

• PAC can achieve **comparable or even superior** fine-tuned model performance.

| Fine-tuning              |       | T5-B  | ase   |       |       | BART-Large T5-Large |       |       |       |       | BART-Large |       |  |  |  |
|--------------------------|-------|-------|-------|-------|-------|---------------------|-------|-------|-------|-------|------------|-------|--|--|--|
| Techniques               | MRPC  | STS-B | SST-2 | QNLI  | MRPC  | STS-B               | SST-2 | QNLI  | MRPC  | STS-B | SST-2      | QNLI  |  |  |  |
| Full Model               | 89.71 | 90.94 | 94.03 | 93.08 | 88.16 | 91.10               | 95.64 | 94.40 | 92.78 | 91.08 | 95.30      | 93.30 |  |  |  |
| Adapters                 | 88.73 | 90.51 | 93.58 | 93.04 | 86.63 | 90.24               | 94.93 | 93.27 | 91.86 | 90.58 | 96.10      | 94.07 |  |  |  |
| LoRA                     | 86.27 | 90.73 | 93.69 | 93.30 | 87.46 | 90.36               | 95.23 | 94.48 | 90.27 | 92.08 | 95.53      | 94.18 |  |  |  |
| Mean Value               | 88.24 | 90.73 | 93.77 | 93.14 | 87.42 | 90.57               | 95.27 | 94.05 | 91.64 | 91.25 | 95.64      | 93.85 |  |  |  |
| Parallel Adapters (Ours) | 88.24 | 90.43 | 93.46 | 93.25 | 87.71 | 90.54               | 95.25 | 93.68 | 91.7  | 91.57 | 95.76      | 93.7  |  |  |  |
| Difference from Mean     | +0.00 | -0.30 | -0.31 | +0.11 | +0.29 | -0.03               | -0.02 | -0.37 | +0.06 | +0.32 | +0.12      | -0.15 |  |  |  |

## Thanks for listening

**Bei Ouyang<sup>\*1</sup>**, Shengyuan Ye<sup>\*1</sup>, Liekang Zeng<sup>2</sup>, Tianyi Qian<sup>1</sup>, Jingyi Li<sup>1</sup>, Xu Chen<sup>†1</sup>

<sup>1</sup>Sun Yat-sen University, <sup>2</sup>HKUST(GZ)



