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Abstract
Big artificial intelligence (AI) models have 

emerged as a crucial element in various intelligent 
applications at the edge, such as voice assistants 
in smart homes and autonomous robotics in smart 
factories. Training big AI models — for example, 
for personalized fine-tuning and continual model 
refinement — poses significant challenges to edge 
devices due to the inherent conflict between lim-
ited computing resources and intensive workload 
associated with training. Despite the constraints 
of on-device training, traditional approaches usu-
ally resort to aggregating training data and send-
ing it to a remote cloud for centralized training. 
Nevertheless, this approach is neither sustainable, 
which strains long-range backhaul transmission 
and energy-consuming datacenters, nor safely pri-
vate, which shares users’ raw data with remote 
infrastructures. To address these challenges, we 
observe that prevalent edge environments usually 
contain a diverse collection of trusted edge devices 
with untapped idle resources which can be lev-
eraged for edge training acceleration. Motivated 
by this, we propose collaborative edge training, 
a novel training mechanism that orchestrates a 
group of trusted edge devices as a resource pool 
for expedited, sustainable big AI model training at 
the edge. As an initial step, we present a compre-
hensive framework for building collaborative edge 
training systems, and analyze in-depth its merits 
and sustainable scheduling choices following its 
workflow. To further investigate the impact of its 
parallelism design, we empirically study a case of 
four typical parallelisms from the perspective of 
energy demand with realistic testbeds. Finally, we 
discuss open challenges for sustainable collabora-
tive edge training to point to future directions of 
edge-centric big AI model training.

Introduction
Big Artificial Intelligence (AI) models are 

making transformative and disruptive impacts in 
human-centric intelligent services. Their ability to 
learn, analyze, and process vast amounts of data 
enables them to perform advanced tasks such as 
continuous multi-round dialogue, generative artis-
tic creation, and high-precision pattern recogni-
tion. Driven by them, the network infrastructure’s 
edge and wireless networks have witnessed a 
rapidly growing number of big AI model based 

applications deployed around users [1], for exam-
ple, voice-controlled assistants in smart homes and 
autonomous robotics in smart factories, and so on.

Given the human-in-the-loop nature of versa-
tile edge services [2], realizing sustainable model 
refinement and privacy-preserving personalization 
is of urgent emphasis to fully unleash the advanced 
ability of big AI models. Nevertheless, big AI mod-
els, which are elfevident to be large, typically 
comprised of computation-intensive Transformer 
blocks in millions and even billions of parameters, 
posing significant challenges for model training on 
edge devices. toward that, traditional approaches 
usually appeal to the powerful cloud, applying a 
centralized training mechanism that collects data 
from all edge devices and distributes models back 
after training completion. Although such a mecha-
nism enjoys training acceleration through remote 
computing resource access, its dependence on 
the cloud may incur tremendous carbon tax and 
inevitably raise privacy issues. To eliminate this 
cloud dependence, some researchers explore train-
ing AI models in situ, which completely reserves 
model training on the device locally. While it can 
well satisfy the privacy demand, the resource-hun-
gry training workload of big AI models makes 
resource-poor edge devices unaffordable and 
unsustainable to finish an expected training task. 
For instance, training one iteration of the GPT-2 
model with a batch size of 128 and a sequence 
length of 32 requires at least 4.2GB of memory 
and 2.8TFLOPs. In contrast, typical edge devices in 
wireless networks usually are equipped with 4GB 
or 8GB RAM and merely a single mobile SoC. In 
summary, existing mechanisms fall short of simulta-
neously embracing performance, sustainability, and 
privacy for edge model training.

Alternatively, we observe that ubiquitous wire-
less networks such as smart homes and smart fac-
tories often consist of a diverse range of reliable 
dormant devices managed by the same user or 
organization and in close physical proximity [3]. 
This serves as the impetus to consider nearby 
accessible edge devices within a trusted domain as 
a resource pool and engage in collaborative efforts 
with them in a distributed manner, aiming to expe-
dite private big AI model training at the edge. As 
an example, Fig. 1 shows how a voice-controlled 
smart speaker serves the user’s query, where its 
core AI model is trained by collaborating with 
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available edge devices owned by the same user. 
Since all the training courses and data flows are 
provisioned within the private smart home, privacy 
issues are completely reserved as those in on-de-
vice training.

Motivated by the above observation, in this 
article, we propose a novel edge model training 
mechanism called collaborative edge training, 
which breaks the resource wall across distribut-
ed trusted edge devices in wireless networks for 
sustainable, expedited, and private big AI model 
training (e.g., personalized fine-tuning and contin-
ual refined learning). Collaborative edge training 
borrows the idea of collaborative edge computing 
[4–6] but develops a more concrete mechanism 
tailored to big AI models. It targets particularly big 
AI models and proposes a comprehensive frame-
work to tame the whole lifecycle of edge model 
training beyond general workload. Note that col-
laborative edge training also differs from decen-
tralized learning as it does not necessarily require 
clients to maintain a complete local model and 
allows flexible data exchange (raw data, intermedi-
ate tensors, etc.) between devices within the trust-
ed domain (while decentralized learning usually 
only permits transmission of model gradient under 
privacy restrictions).

In summary, this article makes the following 
contributions. First, to make a thorough investiga-
tion on the feasibility of collaborative edge training, 
we compare it in detail with established method-
ologies of edge model training. This comparison 
includes centralized cloud training, on-device 
training, and centralized/decentralized federated 
learning, thereby shedding light on the largely unex-
plored possibilities of collaboration inherent within 
wireless edge networks, while simultaneously iden-
tifying potential scenarios where they can be uti-
lized effectively. Next, a comprehensive framework 
is introduced and sustainable scheduling choices 
are discussed to facilitate collaborative edge train-
ing, encompassing the full life cycle of the training 
pipeline. Third, as a case study, a particular focus is 
placed on investigating the effects of various forms 
of applied parallelism on training-associated energy 
consumption, and a thorough analysis is present-
ed, accompanied by performance results derived 
from realistic testbed experimentation. Finally, an 
extensive discussion is embarked upon, taking a 
full-stack perspective, to suggest the open chal-
lenges pertaining to sustainability in the context of 
collaborative edge training.

Background and Motivation

Big AI Models and Transformer
Big AI models have demonstrated exceptional 
performance in a wide range of tasks, including 
natural language questions and answers, fine-
grained computer vision, and autonomous robot-
ics control. These complex intelligent models 
implicate their advanced ability in an extensive 
number of its parameters, often reaching millions 
or even billions. Basically, in many representative 
big AI models like Bert and GPT, the tremendous 
parameters are organized in multiple stacked 
Transformer blocks.

The primary components of a typical Transform-
er block are the Multi-Head Attention module and 
Multi-Layer Perceptron (MLP). These components 

are interconnected through element-wise opera-
tions, including Dropout, Residual Addition, and 
Layer Norm. Within the Multi-head Attention block, 
the initial linear layer generates separate matrices 
for Query (Q), Key (K), and Value (V) for each 
attention head. Self-attention is then independently 
performed by each head, with the resultant outputs 
concatenated and subsequently processed through 
a final linear layer to obtain the overall output. On 
the other hand, the MLP module comprises two 
linear operations that expand the hidden size from 
h to 4h and subsequently reduce it back to h.

A Transformer block can introduce massive 
matrix multiplications and add operations. Given 
the tens or even hundreds of Transformer blocks 
stacked in a big AI model as well as the consid-
erable training iterations on giant datasets, their 
training necessarily requires substantial computa-
tional resources and ineluctably raises sustainability 
challenges.

Issues of Existing Edge Training Mechanisms
The development of big AI models continues to 
advance the capabilities of AI systems and drive 
progress in various fields, especially for intelligent 
services at the edge. To train these big models 
in wireless edge networks, traditional methods 
typically resort to centralized cloud training, 
on-device training, and Federated Learning, as 
illustrated in Fig. 2.

Centralized cloud training typically collects raw 
labeled data from distributed edge clients and 
employs a remote cloud as the dedicated training 
platform (Fig. 2a). The training workload is entire-
ly reserved and performed on dedicated cloud 
servers or clusters, which have abundant computa-
tional resources and storage capacity. Albeit it can 
effectively expedite the training process, the utili-
zation of the remote datacenter comes at a price 
of excessive carbon footprint, and sharing sensitive 
data directly across clients and remote datacenters 
inevitably raises users’ private concerns.

On-device training brings the training process 
closer to the end-user by leveraging the compu-
tational power and resources available on their 
own devices (Fig. 2b). Contrary to the cloud-based 
approach, sensitive data does not need to leave the 
user’s device in on-device training, and thus privacy 
preservation is guaranteed. It also reduces reliance 
on network connectivity and cloud infrastructures, 
ensuring that training can be performed even in 

FIGURE 1. An example scenario of intelligent voice assistant in a smart home, 
which is driven by a collaboratively trained big AI model. 
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offline or low-connectivity scenarios. Nevertheless, 
limited computational resources and memory on 
edge devices restrict the size and complexity of 
models and make them unsustainable for big AI 
models. The isolation of training data on individual 
devices also restricts the representation ability of 
models owned by them, since in-situ models can 
only learn from local data.

Centralized federated learning is a distributed 
machine learning approach where the training of 
a model occurs on various edge devices or serv-
ers (Fig. 2c), instead of solely centralizing the train-
ing process on a single server or in the cloud. In 
federated learning, the training data remains on 
the individual devices, and only the model updates 
or aggregated weights are exchanged between 
the devices and the central server. However, it 
still requires each edge device to provision a local 
model, suffering from the same resource con-
straints in on-device training.

Decentralized federated learning performs feder-
ated learning in a central-server-less manner. Unlike 
centralized federated learning that resorts to a 
central coordinator (e.g., the cloud) to orchestrate 
the pipeline and train a global model, decentral-
ized federated learning allows clients to exchange 
model updates directly with each other [7], as in 
Fig. 2d. Nonetheless, it endures the same issue as 
that in centralized federated learning, where every 
client bears a complete local model with limited 
on-device resources.

Motivation of Collaborating Edge Training
The above discussion reveals the practical issues 
of existing training approaches with respect to 
performance, sustainability, and privacy. Alterna-
tively, we observe that many edge scenarios typi-
cally contain a set of available (idle) edge devices 
within a trusted domain and they can be properly 
managed to render computational resources as 
a whole for big AI model training. Motivated by 
this, we propose collaborative edge training, a 
distributed training mechanism that orchestrates 

multiple available edge devices within the trusted 
domain as a resource pool to provide sustainable 
edge model training in wireless networks (Fig. 2e).

Merits: Collaborative edge training viably 
exploits the inherent potential of wireless net-
works and offers merits on five levels. First, through 
harvesting idle computational resources from 
underutilized devices, collaborative edge training 
implements resource efficiency, that is, increased 
edge resource utilization, compared to on-device 
training. Second, by breaking the boundary of 
training data in the trusted domain, collaborative 
training unlocks a larger volume of learning mate-
rials for training, in contrast to on-device training 
which is only accessible to local data. Third, by 
exploiting resources within the edge scenario, col-
laborative edge training fully inherits the benefit of 
edge computing and profitably reduces server rent-
al in cloud training, that is, rendering cost efficien-
cy. Fourth, with an augmented number of edge 
devices, collaborative edge training enables more 
fault tolerance opportunities and offers more train-
ing robustness than single-device in-situ training. 
Fifth, by managing all data flow and computation 
workload within the trusted domain, collaborative 
edge training is independent of remote cloud and 
promises reliable privacy preservation.

Distinction from Existing Approaches: Col-
laborative edge training differs from the existing 
training approaches discussed previously. First, 
compared to centralized federated learning and 
cloud training, it does not rely on the cloud server, 
effectively mitigating privacy leaky risks brought 
by the cloud providers. Second, unlike on-device 
training that affords workloads solely on a single 
device, collaborative edge training assembles mul-
tiple facilities for a shared workload, which breaks 
the resource wall among devices. Third, different 
from centralized/decentralized federated learn-
ing that enforces each client to hold a full local 
model, collaborative edge training allows partial 
model replication on devices and thus enables the 
system to support big AI models on a larger scale. 

FIGURE 2. Existing AI model training mechanisms versus collaborative edge training: a) Centralized cloud training; b) On-device train-
ing; c) Centralized federated learning; d) Decentralized federated learning; e) Collaborative edge training.

a) b)

c) d) e)
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Besides, due to the privacy restriction, clients in 
decentralized federated learning can not commu-
nicate raw training data but only model updates; 
in collaborative edge training, clients instead can 
freely exchange data (training data, intermediate 
tensors, etc.) within the trusted domain.

Potential Scenarios: Collaborative edge train-
ing is particularly useful for sustainable big model 
fine-tuning and privacy-preserving personaliza-
tion in trusted edge domains. Note that trusted 
domains are configurable and adjustable, which 
can be flexibly defined according to the require-
ments of users’ privacy preferences. For instance, 
in a smart factory that deploys a cluster of sensors, 
monitors, and edge servers, these edge devices 
are managed by the same organization and can 
be naturally viewed in the same trusted domain 
[8]. In smart homes, family members usually pos-
sess several smartphones, smartwatches, tablets, 
and laptops, and one or multiple separate trusted 
domain(s) can be established among these devices 
as long as their owners are willing to share resourc-
es [9].

Collaborative Edge Training of Big AI Models
To translate the merits discussed above into prac-
tical utilities in deployment, we design a general 
and compatible framework to unify collaborative 
edge training in various scenarios. In what follows, 
we will present its overview and discuss schedul-
ing choices toward sustainability.

Framework Overview
Figure 3 illustrates a comprehensive framework 
for collaborative edge training in trusted domains, 
which works in four phases. Specifically, given 
a set of trusted edge devices, the system first 
selects some from them by examining their access 
availability, computational capability, power 
requirements, and so on. This is accomplished 
by resource profiling techniques, for example, 
applying benchmark toolkits upon edge facilities, 
to obtain their performance metadata (Fig. 3a). 
Next, in the second phase, the system scheduler is 
committed to determining an orchestration strate-
gy such that available computation, communica-
tion, and memory resources are efficiently utilized 
to realize dedicated sustainability objectives like 
energy consumption, cost budget, and training 
throughput (Fig. 3b). The orchestration strategy 
comprises a group of system configurations such 
as parallelism principles and workload distribu-
tion, and will be detailed in the next subsection. 
In light of this strategy, the system will replicate 
the targeted big AI model partially or completely 
into participated edge devices in the third phase, 

and direct training data collection to the entrance 
of the devices’ pipeline (Fig. 3c). Upon data col-
lected and the model installed, the system will 
launch model training runtime to complete target-
ed training tasks, (Fig. 3d), exchanging data across 
wirelessly connected edge devices if necessary.

Scheduling Collaborative Edge Training for  
Sustainability

Collaborative edge training of big AI models over 
wireless networks comes with several unique 
properties. Specifically, it introduces versatile 
communicated content, including model param-
eters, raw training data, intermediate tensors, and 
so on, in different periods of the workflow. This 
not only magnifies the communication complexity 
but also induces large transferred data volume. 
Besides, to resolve the frequent data exchange 
between devices in collaboration, the wireless 
communications are expected to be accurate and 
real-time.

The proposed collaborative edge learning 
framework is compatible with different designs of 
wireless networks as long as the participated edge 
devices can be well connected for collaboration. 
Despite that, provisioning a collaborative edge 
training pipeline for sustainable big AI model train-
ing is yet up against a set of Research Questions 
(RQs) to be answered. Following the four phases 
in the framework presented above, we discuss four 
fundamental RQs as follows.

RQ1: How to Select Proper Participants? 
Selecting proper participants for collaborative edge 
training is a crucial step to ensure the effectiveness 
and efficiency of the training process and is the 
core RQ in the first phase (Fig. 3a). The available 
devices can be heterogeneous with different types 
of devices, operating systems, or hardware con-
figurations. To perform favorable selection among 
them, several factors should be considered includ-
ing device capability, data relevance, network con-
nectivity, privacy and security requirements, as well 
as participation incentives. Besides, the selection 
process may very depending on specific applica-
tions and requirements, demanding different per-
formance preferences and distinct efforts in striking 
balances.

RQ2: How to Design Optimal Parallelism? 
Given the registered devices, the second phase 
(Fig. 3b) is obliged to determine a principle to 
orchestrate the parallel data flow among them. This 
principle is imperative to sustainable collaborative 
training since it dominates the task partitioning of 
Transformer blocks, load balancing of distributed 
devices, as well as synchronization and aggregation 
strategies [8]. Either of them involves the utiliza-

FIGURE 3. Overview of collaborative edge training workflow: a) Participant selection and resource profil-
ing; b) Sustainable collaboration scheduling; c) Model replication and data colleciton; d) Collaborative 
model training.

a) b) c) d)
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tion of computation, communication, and memory 
in the resource pool, and thus parallelism design 
plays an essential role in collaborative edge train-
ing. Later, we will take this RQ as a case study to 
further explore the impact of different parallelisms 
in collaborative edge training.

RQ3: How to Arrange Device Topology? Pro-
vided a decided parallelism principle, the system 
in the third phase (Fig. 3c) is compelled to arrange 
a topology of the participant devices under the 
existing connectivity of the wireless network. In 
essence, the arrangement of device topology 
entails finer-grained consideration of training work-
load distribution, memory footprint of model seg-
ments, and transferred data content. For instance, 
in pipeline parallel, the big AI model is divided 
into successive segments and replicated these seg-
ments to different devices. The topology, that is, 
the ordering of participated devices, thus impacts 
which segments the individual devices load, where 
the raw data is collected, and how the data flows 
across devices.

RQ4: How to ensure fault tolerance? Main-
taining a sustainable training runtime in the fourth 
phase (Fig. 3d) needs to guard a continuously sta-
ble pipeline throughout the training lifecycle. Gen-
erally, many distributed-computing-oriented fault 
tolerance techniques are advantageous, such as 
redundant replication, periodical checkpointing, 
exception handling, and resilient communication. 
Nonetheless, applying them to collaborative edge 
training demands a careful design with respect to 
the trade-off between training performance and 
recovery overhead.

Case Study: Sustainable Parallelism Design
The four RQs discussed above reflect the sched-
uling choices in the four phases of collaborative 
edge training. This section takes RQ2 as the knob 
to further investigate how parallelism design 
impacts system energy demand. Particularly, we 
first briefly introduce four typical parallelisms in 
Transformer-based big AI models, and next empir-
ically evaluate their energy consumption with real-
istic experiments.

Parallelisms for Collaborative Transformers Training
According to the separation of data, model, and 
activations, parallel Transformer processing can 
be categorized into four types: data parallelism, 
sequence parallelism, tensor parallelism, and 
pipeline parallelism. Fig. 4 depicts parallel instanc-
es with three trusted devices and a Transform-
er-based language model, where the input data is 
a sequence of successive tokens (words, punctua-
tion, etc.) selected from the GLUE dataset [10], as 
shown in the legend.

Data parallelism is one of the commonly adopt-
ed parallelisms that distributes the training data 
across multiple devices and performs parallel train-
ing among them. As shown in Fig. 4a, each device 
replicates a copy of the full model and is fed with 
an individual sequence for training. Every iteration 
they finish, their models will be reduced via model 
synchronization, that is, AllReuce operations, to 
ensure global consistency, where gradient updates 
are synchronously exchanged among devices. The 
above procedure will repeat until all data batches 
are processed and all local models are converged.

Sequence parallelism is a customized parallelism 
for Transformer-based big AI models, which pro-
cesses input of token sequences. Fig. 4b illustrates 
its mechanism, where the input sequence is split 
into smaller subsequences and each subsequence 
is independently processed through Transformer 
blocks in parallel by different devices. Due to the 
partitioning in the sequence dimension, sequence 
parallelism introduces dependencies between the 
subsequences, as consecutive subsequences may 
depend on the outputs of previous subsequences. 
To address this, intermediate states, such as the 
attention layer’s outputs, are exchanged between 
devices through the AllGather and AllReduce col-
lective communications to ensure correct calcula-
tions.

Tensor Parallelism focuses on parallelizing the 
computations in the attention weight dimensions. 
Specifically, the self-attention and feed-forward lay-
ers in Transformer blocks engage massive matrix 
multiplications and can be parallelized along the 
dimension of the head (in Multi-Head Attenion 
modules) or hidden size (in Multi-Layer Percep-
tron modules). Note the input sequence remains 
as a whole while the embeddings and attention 
masks are divided into smaller chunks (model seg-
ments) and distributed across devices, as in Fig. 4c. 
To handle data synchronization, tensor parallelism 
relies on collective operations, such as AllReduce, 
to exchange gradient information across devices.

Pipeline parallelism partitions the model in the 
layer dimension, which divides the model into mul-
tiple consecutive blocks, and each block is pro-
cessed by different devices in a pipelined manner 
(Fig. 4d). Each device processes its assigned model 
block independently, taking into account the 
dependencies between model blocks. The inter-
mediate outputs of each model block are passed 
forward to the next model block for further pro-
cessing. Pipeline parallelism enables overlapping 
computations, where one model block can start 
processing its input while another model block 
is still processing its previous input. This feature 
allows for reducing the idle time of devices and 
thus increasing the overall throughput of the train-

FIGURE 4. Illustration of different parallelisms in collaborative edge training. Different colors represent assignments to different edge 
devices: a) Data parallelism; b) Sequence parallelism; c) Tensor parallelism; d) Pipeline paralellism. 

...

a) b) c) d)
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ing process.
Although pipeline parallelism and split learning 

[11] both tackle privacy issues and partition neu-
ral networks in layer granularity, they are largely 
different model training mechanisms due to the 
following reasons. First, split learning is designed 
principally for cross-platform training without shar-
ing raw data under a particular premise of privacy, 
whereas pipeline parallelism in collaborative train-
ing allows mutual data sharing across edge devices 
within the trusted domain, aiming at sustainable 
and expedited edge learning. Second, split learning 
is carried out between two sides (i.e., the client and 
the server), while pipeline parallelism allows two- or 
multi-party training over distributed edge devices. 
Third, the training data of split learning are wholly 
from the client side, but pipeline edge training may 
leverage data from all available participants.

Note that these four parallelisms do not modify 
the architecture of the AI model and fully reserve 
all data and model parameters. All model gradients 
are synchronously updated. Hence, their training 
convergences are guaranteed as it is in single-de-
vice training. Among them, both tensor parallelism 
and pipeline parallelism enable partial model rep-
lication on edge devices, which effectively reduc-
es on-device memory footprint and attains better 
model scalability.

Empirical Performance Evaluation
Given the four parallelisms discussed above, we 
build realistic testbeds to evaluate their sustainabil-
ity in terms of energy consumption and measured 
latency empirically. In particular, our testbeds 
comprise two trusted domains, a homogeneous 
one with four Jetson Nanos and a heterogeneous 
one with two Jetson Nanos, one Jetson TX2, and 
one Jeston NX. Each testbed has two modes, that 
is, a CPU-only mode and a GPU-enabled mode, 
for a thorough evaluation. The specifications of 
edge devices are as follows: Jetson Nano has a 
1.47GHz Cortex-A53 CPU, a 128-core Maxwell 
GPU, and 4GB RAM; Jetson TX2 has a 2GHz 
Cortex-A57 CPU, a 256-core Pascal GPU, and 
8GB RAM; Jetson NX has a 6-core 1.4GHz Car-
mel CPU, a 384-core Volta GPU, and 8GB RAM. 
In each domain, we connect all available devices 
using 1000Mb/s wireless networks to emulate 
the networking environment in a smart home 
scenario and assume all devices within the trust-
ed domain to participate in the collaboration. All 
parallelisms are implemented based on PyTorch, 
where data parallelism is built using the PyTorch 
Distributed Data Parallel library and performs gra-
dient synchronization every 5 iterations. To better 
demonstrate the superiority of collaboration, we 
include a baseline scenario of single-device train-
ing that tests on a Jetson Nano. Experiments are 
carried out with four typical big AI models: Distil-
BERT, GPT2-S, OPT, and GPT2-L, where they are 
respectively with 6, 12, 24, and 36 Transformer 
blocks, and 66M, 124M, 350M, and 0.7B param-
eters. For model details, they respectively have 
12, 12, 16, and 20 attention heads, and 768, 768, 
1024, and 1280 hidden sizes. The training is con-
ducted with a subset of samples, where the aver-
age sequence length is 32, from QNLI corpus of 
the popular GLUE datasets [10]. To ensure a fair 
comparison, all measurements are in the same 
global mini-batch size of 128, and are repeated 

for multiple rounds to export their average.
We measure system sustainability by the met-

ric of energy demand and measured latency per 
sample. Specifically, we launch a training task from 
scratch and record the total consumed energy/
latency and the number of processed data sam-
ples within a period, and accordingly calculate 
sample-wise energy/latency. Figures 5 and 6 show 
the experimental results when applying different 
parallelisms, where their performances vary from 
models. From the results, we can derive the fol-
lowing observations. First, collaborative training is 
able to render significant training acceleration over 
single-device training across all models, and by 
selecting proper parallelism (e.g., pipeline parallel-
ism), it can achieve fair energy consumption on par 
with single-device training. In particular for GPT2-L, 
its parameter scale exceeds the available memo-
ry space of a single device, leading single-device 
training to an out-of-memory error and incomplete 
training. Data parallelism and sequence parallelism, 
which also require to load full models on individual 
devices, also fail for the same reason. By contrast, 
tensor parallelism and pipeline parallelism still finish 
the training since they allow partial model repli-
cation on participating devices, which effectively 
mitigates the single-device memory usage. Second, 
a larger size of parameters leads to higher energy 
demand, and their growths are positively correlat-
ed. This is particularly evident in homogeneous 
setups (i.e., Figs. 5a and b), where OPT with 5.3¥ 
and 2.8 parameters records 5.1 and 2.7 aver-
age energy consumption across four parallelisms 
than DistilBERT and GPT2-S, respectively. Third, 
data parallelism and pipeline parallelism perform 
generally better than sequence parallelism and 
tensor parallelism. This is because the latter two 
principles require much more data synchronization 
between devices when their sequences or activa-
tions are split (Fig. 4 above), for which the com-
munication overhead dominates the collaborative 
training process and exhausts a majority of energy. 
Fourth, CPU-only training takes much more energy 
than GPU-enabled training, no matter for homoge-
neous or heterogeneous setups. Transformer block 
processing is essentially highly parallelized matrix 
multiplications, which are GPU-friendly operations. 
Therefore, compared with CPU-only mode, the 
GPU-enabled system can availably reduce the pro-
cessing time of Transformer blocks, as indicated 
by the latency results, and achieve better energy 
efficiency. From the above observations, we can 
conclude that applying data parallelism and pipe-
line parallelism with GPU-equipped edge devic-
es can attain superior sustainability among others, 
while finer-grained hybrid parallelism and multi-tier 
solutions are desired to exploit further the potential 
implicated in wireless edge networks.

Open Challenges for Sustainable 
Collaborative Edge Training

Despite omnifarious opportunities, collaborative 
edge training is yet confronted with a set of open 
challenges toward sustainable and high-perfor-
mance big AI model training.

Sustainability Metric Design
The foremost question to optimize sustainabili-
ty is how to define and quantify sustainability. In 
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general, sustainability pertains to minimizing neg-
ative impacts on the environment, society, and 
resources. We thus may quantitatively design met-
rics from “4E” dimensions: Efficiency, Economics, 
Environment-friendliness, and Ethics. Specifically, 
efficiency means performance efficiency on laten-
cy, throughput, accuracy, and so on. Econom-
ics tackles financial budgets, expecting a proper 
price-per-performance such that the AI services 
can run stably in the market. Environment-friend-
liness indicates protecting our environment and 
considers metrics of carbon emission, resource 
conservation, and lifecycle hardware assessment 
[12]. Ethics calls for responsible AI, which aligns 
big AI models with human beings to ensure fair-
ness, transparency, inclusivity, and privacy.

Efficient Collaboration Orchestration
Achieving efficient collaboration orchestration 
is essential because it directly impacts resource 
utilization across edge devices and thereupon 
the overall performance and scalability of the 
collaborative edge training system. In particular, 
it involves optimizing resource allocation, task 
scheduling, and communication strategies to 
ensure that the training process is carried out effi-
ciently and effectively while utilizing the available 
edge devices’ capabilities to their fullest, espe-
cially for supporting big AI models on massive 
scales. Besides, fault tolerance is also a key aspect 
demanding careful design since the wireless edge 
networks are often dynamic and even vulnera-
ble. Following the discussion above, a high-per-

formance system should answer the four RQs 
through the training lifecycle so as to holistically 
coordinate and manage the resources and tasks 
across multiple edge devices involved in the col-
laborative training process.

Participant Incentivization
Efficient collaborative edge training is indispens-
able for the participation of multiple edge devices 
in the trusted domain. toward their willingness to 
share computational, communication, and stor-
age resources, how to incentivize, measure, and 
pay back their contribution in collaboration can 
significantly impact the long-term sustainability 
of the training pipeline. To address the challeng-
es, researchers and practitioners need to devise 
effective mechanisms that align the interests of 
the participants with the collective goals of the 
collaborative edge training systems. These mech-
anisms may include monetary rewards, reputation 
systems, data and model-sharing agreements, or 
privacy-preserving techniques. It is crucial to strike 
a balance between providing incentives for active 
participation and ensuring fairness, privacy, and 
security for all participants.

AI-Native Wireless Networks
The design of wireless networks is crucial for the 
performance of wireless big AI models. On the 
one hand, wireless networks serve as a network-
ing infrastructure to support big AI model com-
puting over edge devices, servers, and the cloud. 
The quality of communication can be a bottleneck 

FIGURE 5. Energy demand and measured latency per sample of collaborative edge training under different 
parallelism in a homogeneous testbed. OOM indicates the out-of-memory error: a) Energy demand in 
CPU-only mode; b) Energy demand in GPU-enabled mode; c) Measured latency in CPU-only mode; d) 
Measured latency in GPU-enabled mode.
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in rendering sustainable big AI model based ser-
vices [13]. On the other hand, wireless networks 
themselves can be rich data sources for building 
and enhancing wireless big AI models. The design 
of wireless networks can steer the evolution of 
wireless big AI models toward better human-cen-
tric services. In the real-world deployment of col-
laborative edge training, network operators may 
allocate more bandwidth between participated 
devices such that their frequent data exchange is 
carried out with lower delay and higher through-
put. Emerging communication techniques like 
Ultra-Wideband and 6G [14] may be useful, but 
more sustainable, lightweight, and reliable pro-
tocols and tools are desired to account for the 
unique characteristics of wireless edge networks 
including limited bandwidth, intermittent connec-
tivity, and diverse device capabilities.

Wireless-Native AI Models
Traditionally, big AI models are trained and 
deployed on powerful centralized servers or in 
the cloud. However, in collaborative edge train-
ing scenarios, the focus shifts toward designing 
wireless-native models that embrace the wireless 
networks and the constrained execution environ-
ment of edge devices like limited computational 
capability, memory, and battery life. To accom-
plish that, wireless-native AI models may optimize 
their structure, complexity, and computational 
requirements to ensure sustainable execution in 
wireless edge networks. Several model compact-
ing techniques can be applied to generate these 
models like neural architecture search, knowledge 

distillation, and model compression. For example, 
one may adopt knowledge transfer techniques to 
a larger, more complex teacher model from the 
cloud (e.g., network cloud or base station cloud) 
and distillate its knowledge to the student model 
at the edge, so as to improve the training efficien-
cy of edge models.

Power-Efficient Hardware
Edge devices, such as IoT sensors and mobile 
devices, often have limited battery life and energy 
resources. Collaborative edge training involves 
distributed computations across these devices, 
which can be computationally intensive and drain 
the battery quickly. Developing power-efficient 
hardware solutions is thus crucial to addressing 
the energy consumption challenge and ensuring 
sustainable and prolonged operation of edge 
devices during collaborative training. toward this 
challenge, the community has explored an array 
of solutions like low-power processors, dynamic 
power management techniques, energy harvest-
ing devices, and edge AI accelerators.

Practical Privacy and Security
A sustainable training system must be trusted and 
admitted by users such that necessary training 
data and computational resources are provid-
ed. In the proposed collaborative edge training 
framework, participating devices are supposed to 
be in one trusted domain to ensure privacy pres-
ervation. However, this requirement can be prop-
erly relaxed if some practical privacy and security 
techniques are applied and users’ privacy is pro-

FIGURE 6. Energy demand and measured latency per sample of collaborative edge training under different 
parallelism in a heterogeneous testbed. OOM indicates the out-of-memory error: a) Energy demand in 
CPU-only mode; b) Energy demand in GPU-enabled mode; c) Measured latency in CPU-only mode; d) 
Measured latency in GPU-enabled mode.

DistilBERT GPT2-S OPT GPT2-L
Model

0

10

20

30

40

En
er

gy
 D

em
an

d 
(J

/s
am

pl
e)

O
O

M
O

O
M

O
O

M

Single-Device Training
Data Parallelism
Sequence Parallelism
Tensor Parallelism
Pipeline Parallelism

DistilBERT GPT2-S OPT GPT2-L
Model

0

10

20

30

40

En
er

gy
 D

em
an

d 
(J

/s
am

pl
e)

O
O

M
O

O
M

O
O

M

Single-Device Training
Data Parallelism
Sequence Parallelism
Tensor Parallelism
Pipeline Parallelism

DistilBERT GPT2-S OPT GPT2-L
Model

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

su
re

d 
La

te
nc

y 
(s

/s
am

pl
e)

O
O

M
O

O
M

O
O

M
Single-Device Training
Data Parallelism
Sequence Parallelism
Tensor Parallelism
Pipeline Parallelism

DistilBERT GPT2-S OPT GPT2-L
Model

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

su
re

d 
La

te
nc

y 
(s

/s
am

pl
e)

O
O

M
O

O
M

O
O

M

Single-Device Training
Data Parallelism
Sequence Parallelism
Tensor Parallelism
Pipeline Parallelism

a) b)

c) d)

a) b)

c) d)



IEEE Wireless Communications • June 20249

tected at the same level. For example, one may 
leverage cryptography techniques, for example, 
differential privacy and homomorphic encryption, 
to guarantee information security and guarding 
techniques, for example, secure communication 
protocol and trusted execution environments 
for system security [15]. Nevertheless, these pri-
vacy-preserving tools usually come at a cost of 
performance, which still demands careful design 
specific to collaborative edge training.

Conclusion
Big AI models have unlocked a wide range of 
intelligent services at the edge and promote the 
need of edge model training tasks like personal-
ized fine-tuning and continual model refinement. 
In this article, we propose collaborative edge 
training, a novel training mechanism distinct from 
traditional centralized cloud training and on-de-
vice training, which breaks the resource wall 
across a set of trusted edge devices for sustain-
able, expedited, and private edge model training. 
We build a comprehensive framework to unify 
the workflow of collaborative edge training and 
analyze in-depth its merits and research questions 
to be addressed in each phase of its lifecycle. As a 
case study, we further investigate how parallelism 
design impacts the energy demand of collabora-
tive training, and explain design choices with pro-
totype-based experiments. We also discuss open 
challenges toward sustainable collaborative edge 
training from a full-stack perspective, suggesting 
future directions for sustainability research in the 
big AI model era.
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