A Comprehensive Overview of Large Language Models (LLM): Insights from a Machine Learning System Perspective

Shengyuan Ye

School of Computer Science and Engineering Sun Yat-sen University Contact: yeshy8@mail2.sysu.edu.cn

LLM and ChatGPT

Chat-based LLM is walking into our daily life!

LLM and ChatGPT

LLMs are taking our jobs!

GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models

Tyna Eloundou¹, Sam Manning^{1,2}, Pamela Mishkin^{*1}, and Daniel Rock³

¹OpenAI ²OpenResearch ³University of Pennsylvania

March 20, 2023

If human logic and creativity can be replaced. What jobs do you think will be left?

For the last 10 years I believed AI will free humanity from brainless tasks and push the world towards a more creative future.

However, with models like Stable Diffusion, artists are also being pushed out.

没有GPT暴露风险的职业

农业设备操作员	油漆匠、泥水匠、瓦匠助手
运动员与体育竞赛者	管道工助手
汽车玻璃的安装和维修工	屋顶工人助手
公交与卡车机械师与柴油发动机专家	鱼肉禽类的切割工
水泥泥瓦匠和混凝土修整工	摩托车机械师
厨师	铺路及夯实设备操作员
手动切割与裁剪的工作者	打桩机操作员
石油与天然气钻探业的井架操作员	金属浇注机操作员
餐厅与自助餐厅的服务员和调酒师助手	铁路轨道铺设和维护设备操作员
洗碗工	耐火材料维修商
疏浚操作员	采矿顶板锚杆机操作员
电力管线安装与维修工	石油和天然气钻探业的体力劳动者
地表矿业挖掘、装载、拉铲机械操作员	屠宰工和肉类包装机操作员
地板工	石匠
铸造模具和制芯师	密封石膏板或其他墙板的接缝工
砖匠、石匠、瓷砖匠安装工助手	轮胎修理工与更换工
木匠助手	井口泵送机操作员

2023/9/5 Credit: Google images.

Trend of LLM in Research Fields

• LLM is rapidly emerging as the hottest direction in research fields

A sharp increase occurs after the release of ChatGPT: the average number of published arXiv papers that contain "large language model" in title or abstract goes **from 0.40 per day to 8.58 per day**.

2023/9/5 Credit: https://github.com/RUCAIBox/LLMSurvey.

The Cost Barrier of LLM

BUSINESS INVESTING TECH POLITICS CNBC TV INVESTING CLUB 🔒 PRO 🔒

тесн

MARKETS

ChatGPT and generative AI are booming, but the costs can be extraordinary

新聞

ChatGPT日燒70萬美金, OpenAI傳面臨破產

繼去年媒體指出OpenAI因開發ChatGPT · 導致虧損擴大到5.4億美元 · 如今更有報導宣稱 · OpenAI即便獲得 微軟金援 · 但營收表現不理想仍讓這家新創浮現破產危機

揭秘Cha	atGPT背 が約77主	「后天化 ー	超算!	上万颗英	转伟达A1	00,
51010	内容精选	视频	话题	技术期刊	活动	

作者:新智元 2023-03-14 13:06:54

- The cost of training GPT-3 is estimated to be around \$1.4 million, and for some larger LLM models, the training costs range between \$2 million to \$12 million.
- The cost of operating OpenAl's ChatGPT could potentially reach \$0.7 million per day.

The Cost Barrier of LLM

 How much does it cost when using ChatGPT to finish a writing task?

Prices of GPT4

Model	Input	Output	
8K context	\$0.03 / 1K tokens	\$0.06 / 1 K tokens	
32K context	\$0.06 / 1 K tokens	\$0.12 / 1K tokens	

Prices of GPT3.5-Turbo

Model	Input	Output	
4K context	\$0.0015 / 1K tokens	\$0.002 / 1 K tokens	
16K context	\$0.003 / 1K tokens	\$0.004 / 1K tokens	

阅读下面的材料,根据要求写作。(60分)

人们因技术发展得以更好地掌控时间,但也有人 因此成了时间的仆人。

这句话引发了你怎样的联想与思考?请写一篇文章。

要求:选准角度,确定立意,明确文体,自拟标题;不要套作,不得抄袭;不得泄露个人信息; 不少于800字。

- Input Tokens: 100 tokens
- Output Tokens: 800 tokens

Price of using ChatGPT4:

- Input Price: **100 tokens × \$0.03/1K = \$ 0.003**
- Output Price: 800 tokens × \$0.06/1k = \$ 0.048
- Total Price: \$ 0.003 + \$ 0.048 = \$ 0.051 = **¥** 0.371

The Cost Barrier of LLM

ChatGPT and Comparisons, Worldwide Monthly Visits Desktop & Mobile Web Worldwide 2,000,000,000 1,500,000,000 500,000,000

an 2023

Feb 2023

🔵 chat.openai.com 🛑 bing.com 😑 character.ai 🜑 bard.google.com

Mar 2023

* Preliminary Estimate

ac 2022

• According to data released in May of this year, the ChatGPT website has surpassed 1.5 billion monthly active users.

May 2023

Jun 2023

 Due to immense cost pressures, companies that fail to capture market share will ultimately be eliminated.

百度、商汤等大模型产品获批,今日 起全面开放上线

机器之心 2023-08-31 13:21 发表于北京

• ChatGPT Training Pipeline

Four Stage Pipeline

Pretraining

Supervised Finetuning Reward Modeling

Reinforcement Learning

2023/9/5 Credit: Andrej Karpathy @ OpenAl.

The LLM pre-training takes up 99% of the entire training pipeline's time and typically requires thousands of GPUs for training over several months.

Four Stage Pipeline

官方 质保

3年

🖪 免费技术支

安全有保障,让您大可放心

🗇 教育优惠

Smaller technology enterprises and educational research labs often can't afford the cost of pre-training LLMs.

♥ 关注 1 对比

科研

专用

• Based model are not Chat Assistant!

Write a poem about bread!

Write a poem about someone. ^I Write a poem about angel. Write a poem about basketball.

The training task of pre-trained language model is to predict the next token, rather than engaging in QA (Question-Answering) dialogues. It may use more questions to answer a question.

Learning

During the Supervised Finetuning of LLM, workers are hired to gather high-quality QA data and the based-model is fine-tuned, requiring fewer GPUs and just days to train.

Four Stage Pipeline

LLM

2023/9/5 Credit: Andrej Karpathy @ OpenAl.

Multiple answers are generated from the same prompt based on SFT model. Workers rank these answers to compile a large ranking dataset, which is then used to train a Transformer-based Reward Model.

0 6 7

CC

当然,这里是一个非常简短的Python函数,用于检查一个 字符串是否是回文:

这个函数使用了Python的字符串切片功能,通过反转字符 串并检查它是否与原字符串相等来判断是否为回文。请注 意,这个版本是大小写敏感的,并且不会忽略空格或其他 标点符号。如果你需要更复杂的处理,可以添加额外的逻

0 6 7

使用示例

这是一个非常简洁的实现,但请注意,它只考虑了基础的 回文检查,并没有处理标点符号或其他特殊字符

Four Stage Pipeline

2023/9/5 Credit: Andrej Karpathy @ OpenAl.

In reinforcement learning, policy gradient algorithm are used to amplify the generation probabilities of "favorable" responses and minimize those of "toxic" ones.

Pretraining **Supervised Finetuning**

Four Stage Pipeline

Reward

Learning

- State: currently generated token sequence
- **Reward: Provided by Reward Model**

F	low	to	Train a Cha	tGPT	Assistar	nt?			X W X
	Base	ed N	Supervised Finetuning	SF	F Lea T Model	Reinfo arning	orcement Alignment	Aligned Model	Sen unt
Rank 1 2 3 4 5	Model Sept-4 Claude-v1 Sept-3.5-turbo Vicuna-13B Koala-13B	Elo Rating 1274 1224 1155 1083 1022	DescriptionChatGPT-4 by OpenAlClaude by AnthropicChatGPT-3.5 by OpenAla chat assistant fine-tuned from LLaMA on user-shared conversations by LMSYSa dialogue model for academic research by BAIR	License Proprietary Proprietary Proprietary Weights available; Non- commercial Weights available; Non-	- Aligned Mod	del	 The SF outper trained 	T model signif forms the bas I model in QA	icantly ed pre- tasks.
6 7 8 9 10 11 12	RWKV-4-Raven-148 Qasst-Pythia-12B ChatGLM-6B StableLM-Tuned- Alpha-7B Alpaca-13B FastChat-T5-3B Dolly-V2-12B	989 928 918 906 904 902 863	an RNN with transformer-level LLM performance an Open Assistant for everyone by LAION an open bilingual dialogue language model by Tsinghua University Stability AI language models a model fine-tuned from LLaMA on instruction-following demonstrations by Stanford a chat assistant fine-tuned from FLAN-T5 by LMSYS an instruction-tuned open large language model by Databricks	Apache 2.0 Apache 2.0 Weights available; Non- commercial CC-BY-NC-SA-4.0 Weights available; Non- commercial Apache 2.0 MIT			 The Alignation further from the that are with hu 	gned Model c filter out exp ne SFT model's e harmful or r uman norms.	an ressions s output oot in line
13	LLaMA-13B	826	open and efficient foundation language models by Meta	Weights available; Non- commercial					

2023/9/5 Credit: Andrej Karpathy @ OpenAl.

RSIT

Autoregressive

- When a LLM generates response, it uses its own previous outputs as inputs for future predictions, forming a chain of dependencies.
- This autoregressive behavior allows the model to generate coherent and contextually relevant text.

Intermediate Cache

- LLM will cache previous computational results (such as the calculations from the black parts of Self-Attention) in memory to avoid redundant calculations.
- The inference process of LLM can be divided into two distinct phases: Encode and Decode

Encode Phase: Inference on LLM's input involves potentially hundreds or even thousands of tokens, making it computationally intensive.

Encode Phase: Inference on LLM's input involves potentially hundreds or even thousands of tokens, making it computationally intensive.

 Decode Phase: each previously predicted token is inputted one at a time, requiring frequent retrieval of intermediate cache from storage.

The Backbone Architecture in LLM

H H H H

• The vast majority of LLMs are based on the **Transformer architecture**.

Attention is all you need! (NIPS 2017)

GPT Series (2019-now)

The Backbone Architecture in LLM

The vast majority of LLMs are based on the Transformer architecture.

Parameter Size and Memory Footprint in LLM

 A language model is generally considered "large" if it has tens of millions to billions of parameters.

模型名称	发布时间	发布机构	参数规模
T5	2019-10	Google	13B
GPT-3	2020-05	OpenAI	175B
LaMDA	2021-05	Google	137B
Jurassic	2021-08	AI21	178B
MT-NLG	2021-10	Microsoft、 NVIDIA	530B
ERNIE 3.0 Titan	2021-12	Baidu	260B
Gopher	2021-12	DeepMind	280B
Chinchilla	2022-04	DeepMind	70B
PaLM	2022-04	Google	540B
OPT	2022-05	Meta	125M-175B
BLOOM	2022-07	BigScience	176B
GLM-130B	2022-08	Tsinghua	130B
LLaMA	2023-02	Meta	7B-65B

Parameter Size and Memory Footprint in LLM

 A language model is generally considered "large" if it has tens of millions to billions of parameters.

模型名称	发布时间	发布机构	参数规模
T5	2019-10	Google	13B
GPT-3	2020-05	OpenAI	175B
LaMDA	2021-05	Google	137B
Jurassic	2021-08	AI21	178B
MT-NLG	2021-10	Microsoft、 NVIDIA	530B
ERNIE 3.0 Titan	2021-12	Baidu	260B
Gopher	2021-12	DeepMind	280B
Chinchilla	2022-04	DeepMind	70B
PaLM	2022-04	Google	540B
OPT	2022-05	Meta	125M-175B
BLOOM	2022-07	BigScience	176B
GLM-130B	2022-08	Tsinghua	130B
LLaMA	2023-02	Meta	7B-65B

 During training, model parameters use Float64 and require 4 bytes each, while during inference, they use Float32 and require 2 bytes each.

The peak memory footprint for accommodating the ChatGLM-130B model is:

- Float64: 130B * 4 /1024/1024 = **480GB!!!**
- Float32: 130B * 2 /1024/1024 = 240GB!!!

How to Break the Resource Wall of a Single GPU?

• The memory of a single device is insufficient to accommodate an entire LLM.

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Mohammad Shoeybi¹² Mostofa Patwary¹² Raul Puri¹² Patrick LeGresley² Jared Casper² Bryan Catanzaro²

 Leveraging matrix decomposition techniques, a Tensor-Parallel (TP) distributed algorithm was developed to partition the model across multiple GPUs, with each GPU storing only a fraction of the model's weights.

LLM on Mobile Edge Devices

- Mobile Computing + LLM has emerged as a new paradigm
 - Popularization of mobile devices in both magnitude and variety
 - Proliferation of mobile data in both scale and modality

2023/9/5 Credit: Google Image

LLM on Mobile Edge Devices

• Model lightweighting and edge deployment will become new research focuses in LLMs.

Challenges of LLM on Mobile

2023/9/5 Credit: Google Image

Hardware

Break the Memory Wall of Mobile Devices

 Utilizing the concept of paging from operating systems, Transformer layers not in use are offloaded to auxiliary storage like SD cards to expand the available memory on mobile devices.

> **POET:** Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

Shishir G. Patil¹ Paras Jain¹ Prabal Dutta¹ Ion Stoica¹ Joseph E. Gonzalez¹

Break the Memory Wall of Mobile Devices

• Propose a framework support memory-efficient on-device LLM training

Memory-efficient DNN Training on Mobile Devices

Collaborative Execution on Mobile Cluster

• Federated Few-shot Learning on Mobile Cluster

Dongqi Cai Shangguang Wang Yaozong Wu Beiyou Shenzhen Institute Beivou Shenzhen Institute Beiyou Shenzhen Institute Felix Xiaozhu Lin Mengwei Xu Beiyou Shenzhen Institute University of Virginia Clients Clients Cosine similarity with mean(not entailment) All unlabelled data **Gold labels** 0 Gold labels 00 00 Train (few) Train (all) Elapsed training time (hours) Pseudo Labels (some 8000 Cloud 30 Cloud Local random filter 0.1 Aggregator Mode Aggregator Infer random filter 0.01 0 0 Unlabeled Random filter random filter 0.5 Redundant (most) 20 Δ random filter 0.05 (a) Classic FL: rely on abundant labels (b) Our FedFSL Scenario 0 no filter Inference Training Clients # of labels 10 Our filter Updated model --→ Updated labels i_{th}+1 iteration j_{th}+f iteration 0 0.5 0.3 0.4 model -0.5 0.0 0.5 1.0 -1.0 1-Accuracy Cosine similarity with mean(entailment) ... mode *i*_{th} iteration j_{th} iteration (a) Representative diversity (b) End-to-end performance

Federated Few-Shot Learning for Mobile NLP

2023/9/5

Summary

- LLM+Mobile is the new frontier, teeming with open questions that are ripe for exploration—let's pioneer the unknown!
- Awesome On-device-Al

https://github.com/ysyisyourbrother/awesome-ondevice-AI

• <u>A Reading List for Machine Learning Systems</u>:

https://jeongseob.github.io/readings_mlsys.html

• Edge AI Paper List:

https://github.com/xumengwei/Edge-AI-Paper-List

<u>Resource Efficient Large Language Model</u>

https://github.com/UbiquitousLearning/Paper-listresource-efficient-large-language-model

()	ysyisyourbrother Merge branch 'main' d	of https://github.com/ysyisyourbrother/awesome-o 58fd7f6 on Jul 7	🕑 12 commits
Ľ	<u>README.md</u>	Merge branch 'main' of https://github.com/ysyisyourbrother/awesome	2 months ago
≣	README.md		Ô
	Welcome to Awes	ome On-device Al	

A curated list of awesome projects and papers for AI on **Mobile/IoT/Edge** devices. Everything is continuously updating. Welcome contribution!

Thanks

Shengyuan Ye

School of Computer Science and Engineering Sun Yat-sen University Contact: yeshy8@mail2.sysu.edu.cn